应用开发--集合02、map概述
Map接口 Map与Collection并列存在。用于保存具有映射关系的数据:key-value,key 和 value 都可以是任何引用类型的数据,其中 key 用Set来存放, 不允许重复,即同一个 Map 对象所对应的类,须重写hashCode()和equals()方法。
常用String类作为Map的“键”,key 和 value 之间存在单向一对一关系,即通过指定的 key 总能找到唯一的、确定的 value。
Map接口的常用实现类: HashMap、 TreeMap、LinkedHashMap和Properties。 其中, HashMap是 Map 接口使用频率最高的实现类
文章图片
添加、 删除、修改操作:
- Object put(Object key,Object value):将指定key-value添加到(或修改)当前map对象中
- void putAll(Map m):将m中的所有key-value对存放到当前map中
- Object remove(Object key):移除指定key的key-value对,并返回value
- void clear():清空当前map中的所有数据
- Object get(Object key):获取指定key对应的value
- boolean containsKey(Object key):是否包含指定的key
- boolean containsValue(Object value):是否包含指定的value
- int size():返回map中key-value对的个数
- boolean isEmpty():判断当前map是否为空
- boolean equals(Object obj):判断当前map和参数对象obj是否相等
- Set keySet():返回所有key构成的Set集合
- Collection values():返回所有value构成的Collection集合
- Set entrySet():返回所有key-value对构成的Set集合
所有的key构成的集合是Set:无序的、不可重复的。所以, key所在的类要重写:equals()和hashCode()
所有的value构成的集合是Collection:无序的、可以重复的。所以, value所在的类要重写: equals()
一个key-value构成一个entry,所有的entry构成的集合是Set:无序的、不可重复的
HashMap 判断两个 key 相等的标准是:两个 key 通过 equals() 方法返回 true,hashCode 值也相等。
HashMap 判断两个 value相等的标准是:两个 value 通过 equals() 方法返回 true。
HashMap源码中的重要常量
DEFAULT_INITIAL_CAPACITY : HashMap的默认容量, 16
MAXIMUM_CAPACITY : HashMap的最大支持容量, 2^30
DEFAULT_LOAD_FACTOR: HashMap的默认加载因子
TREEIFY_THRESHOLD: Bucket中链表长度大于该默认值,转化为红黑树
UNTREEIFY_THRESHOLD: Bucket中红黑树存储的Node小于该默认值,转化为链表
MIN_TREEIFY_CAPACITY: 桶中的Node被树化时最小的hash表容量。(当桶中Node的
数量大到需要变红黑树时,若hash表容量小于MIN_TREEIFY_CAPACITY时,此时应执行resize扩容操作这个MIN_TREEIFY_CAPACITY的值至少是TREEIFY_THRESHOLD的4倍。)
table: 存储元素的数组,总是2的n次幂
entrySet: 存储具体元素的集size: HashMap中存储的键值对的数量
modCount: HashMap扩容和结构改变的次数。
threshold: 扩容的临界值, =容量*填充因子loadFactor: 填充因子
HashMap的存储结构 JDK 7及以前版本: HashMap是数组+链表结构(即为链地址法)
JDK 8版本发布以后: HashMap是数组+链表+红黑树实现。
文章图片
文章图片
HashMap的内部存储结构其实是数组和链表的结合。 当实例化一个HashMap时,系统会创建一个长度为Capacity的Entry数组, 这个长度在哈希表中被称为容量(Capacity), 在这个数组中可以存放元素的位置我们称之为“桶” (bucket), 每个bucket都有自己的索引, 系统可以根据索引快速的查找bucket中的元素。
每个bucket中存储一个元素, 即一个Entry对象, 但每一个Entry对象可以带一个引用变量, 用于指向下一个元素, 因此, 在一个桶中, 就有可能生成一个Entry链。而且新添加的元素作为链表的head。
添加元素的过程
向HashMap中添加entry1(key, value), 需要首先计算entry1中key的哈希值(根据key所在类的hashCode()计算得到), 此哈希值经过处理以后, 得到在底层Entry[]数组中要存储的位置i。 如果位置i上没有元素, 则entry1直接添加成功。 如果位置i上已经存在entry2(或还有链表存在的entry3, entry4), 则需要通过循环的方法, 依次比较entry1中key和其他的entry。 如果彼此hash值不同, 则直接添加成功。 如果hash值不同, 继续比较二者是否equals。 如果返回值为true, 则使用entry1的value去替换equals为true的entry的value。 如果遍历一遍以后, 发现所有的equals返回都为false,则entry1仍可添加成功。 entry1指向原有的entry元素
HashMap的扩容
当HashMap中的元素越来越多的时候, hash冲突的几率也就越来越高, 因为数组的长度是固定的。 所以为了提高查询的效率, 就要对HashMap的数组进行扩容, 而在HashMap数组扩容之后, 最消耗性能的点就出现了:原数组中的数据必须重新计算其在新数组中的位置, 并放进去, 这就是resize。
那么HashMap什么时候进行扩容呢?
当 HashMap中的元素个数超过数组大小 (数组总大 小 length,不是 数组中个数size)*loadFactor 时 , 就 会 进 行 数 组 扩 容 , loadFactor 的 默 认 值(DEFAULT_LOAD_FACTOR)为0.75, 这是一个折中的取值。 也就是说, 默认情况下, 数组大小(DEFAULT_INITIAL_CAPACITY)为16, 那么当HashMap中元素个数超过16*0.75=12(这个值就是代码中的threshold值, 也叫做临界值) 的时候, 就把数组的大小扩展为 2*16=32, 即扩大一倍, 然后重新计算每个元素在数组中的位置,而这是一个非常消耗性能的操作, 所以如果我们已经预知HashMap中元素的个数,那么预设元素的个数能够有效的提高HashMap的性能。
HashMap的内部存储结构其实是数组+链表+树的结合。 当实例化一个HashMap时, 会初始化initialCapacity和loadFactor, 在put第一对映射关系时, 系统会创建一个长度为initialCapacity的Node数组, 这个长度在哈希表中被称为容量(Capacity), 在这个数组中可以存放元素的位置我们称之为“桶” (bucket), 每个bucket都有自己的索引, 系统可以根据索引快速的查找bucket中的元素。
? 每个bucket中存储一个元素, 即一个Node对象, 但每一个Node对象可以带一个引用变量next, 用于指向下一个元素, 因此, 在一个桶中, 就有可能生成一个Node链。 也可能是一个一个TreeNode对象, 每一个TreeNode对象可以有两个叶子结点left和right, 因此, 在一个桶中, 就有可能生成一个TreeNode树。 而新添加的元素作为链表的last, 或树的叶子结点。
那么HashMap什么时候进行扩容和树形化呢?
当HashMap中的元素个数超过数组大小(数组总大小length,不是数组中个数size)*loadFactor 时 , 就 会 进 行 数 组 扩 容 , loadFactor 的 默 认 值(DEFAULT_LOAD_FACTOR)为0.75, 这是一个折中的取值。 也就是说, 默认情况下, 数组大小(DEFAULT_INITIAL_CAPACITY)为16, 那么当HashMap中元素个数超过16*0.75=12(这个值就是代码中的threshold值, 也叫做临界值)的时候, 就把数组的大小扩展为 2*16=32, 即扩大一倍, 然后重新计算每个元素在数组中的位置, 而这是一个非常消耗性能的操作, 所以如果我们已经预知HashMap中元素的个数, 那么预设元素的个数能够有效的提高HashMap的性能。
当HashMap中的其中一个链的对象个数如果达到了8个,此时如果capacity没有达到64,那么HashMap会先扩容解决,如果已经达到了64,那么这个链会变成树,结点类型由Node变成TreeNode类型。当然,如果当映射关系被移除后,下次resize方法时判断树的结点个数低于6个,也会把树再转为链表。
关于映射关系的key是否可以修改?
answer:不要修改映射关系存储到HashMap中会存储key的hash值,这样就不用在每次查找时重新计算每一个Entry或Node(TreeNode)的hash值了,因此如果已经put到Map中的映射关系,再修改key的属性,而这个属性又参与hashcode值的计算,那么会导致匹配不上。
总结: JDK1.8相较于之前的变化:
- HashMap map = new HashMap(); //默认情况下,先不创建长度为16的数组
- 当首次调用map.put()时,再创建长度为16的数组
- 数组为Node类型,在jdk7中称为Entry类型
- 形成链表结构时,新添加的key-value对在链表的尾部(七上八下)
- 当数组指定索引位置的链表长度>8时,且map中的数组的长度> 64时,此索引位置上的所有key-value对使用红黑树进行存储。
- 负载因子值的大小,对HashMap有什么影响
- 负载因子的大小决定了HashMap的数据密度。
- 负载因子越大密度越大,发生碰撞的几率越高,数组中的链表越容易长,造成查询或插入时的比较次数增多,性能会下降。
- 负载因子越小,就越容易触发扩容,数据密度也越小,意味着发生碰撞的几率越小,数组中的链表也就越短,查询和插入时比较的次数也越小,性能会更高。但是会浪费一定的内容空间。而且经常扩容也会影响性能,建议初始化预设大一点的空间。
- 按照其他语言的参考及研究经验,会考虑将负载因子设置为0.7~0.75,此时平均检索长度接近于常数。
与LinkedHashSet类似, LinkedHashMap 可以维护 Map 的迭代顺序:迭代顺序与 Key-Value 对的插入顺序一致
【应用开发--集合02、map概述】
文章图片
TreeMap TreeMap存储 Key-Value 对时, 需要根据 key-value 对进行排序。
TreeMap 可以保证所有的 Key-Value 对处于有序状态。
TreeSet底层使用红黑树结构存储数据
TreeMap 的 Key 的排序:
- 自然排序: TreeMap 的所有的 Key 必须实现 Comparable 接口,而且所有的 Key 应该是同一个类的对象,否则将会抛出 ClasssCastException
- 定制排序:创建 TreeMap 时,传入一个 Comparator 对象,该对象负责对TreeMap 中的所有 key 进行排序。此时不需要 Map 的 Key 实现Comparable 接口
Hashtable Hashtable是个古老的 Map 实现类, JDK1.0就提供了。不同于HashMap,Hashtable是线程安全的。
Hashtable实现原理和HashMap相同,功能相同。底层都使用哈希表结构,查询速度快,很多情况下可以互用。
与HashMap不同, Hashtable 不允许使用 null 作为 key 和 value
与HashMap一样, Hashtable 也不能保证其中 Key-Value 对的顺序
Hashtable判断两个key相等、两个value相等的标准, 与HashMap一致。
Properties Properties 类是 Hashtable 的子类,该对象用于处理属性文件
由于属性文件里的 key、 value 都是字符串类型,所以 Properties 里的 key和 value 都是字符串类型
存取数据时,建议使用setProperty(String key,String value)方法和getProperty(String key)方法
Properties pros = new Properties();
pros.load(new FileInputStream("jdbc.properties"));
String user = pros.getProperty("user");
System.out.println(user);
Collections工具类 Collections 是一个操作 Set、 List 和 Map 等集合的工具类
Collections 中提供了一系列静态的方法对集合元素进行排序、查询和修改等操作,还提供了对集合对象设置不可变、对集合对象实现同步控制等方法
排序操作: (均为static方法)
- reverse(List): 反转 List 中元素的顺序
- shuffle(List): 对 List 集合元素进行随机排序
- sort(List): 根据元素的自然顺序对指定 List 集合元素按升序排序
- sort(List, Comparator): 根据指定的 Comparator 产生的顺序对 List 集合元素进行排序
- swap(List, int, int): 将指定 list 集合中的 i 处元素和 j 处元素进行交换
- Object max(Collection): 根据元素的自然顺序,返回给定集合中的最大元素
- Object max(Collection, Comparator): 根据 Comparator 指定的顺序,返回给定集合中的最大元素
- Object min(Collection)
- Object min(Collection, Comparator)
- int frequency(Collection, Object): 返回指定集合中指定元素的出现次数
- void copy(List dest,List src):将src中的内容复制到dest中
- boolean replaceAll(List list, Object oldVal, Object newVal): 使用新值替换List 对象的所有旧值
- Collections 类中提供了多个 synchronizedXxx() 方法,该方法可使将指定集合包装成线程同步的集合,从而可以解决多线程并发访问集合时的线程安全问题
文章图片
文章图片
推荐阅读
- 图书集合完毕
- 科塔德综合征
- 合理情绪疗法之试用|李克富思维训练营56/90
- 合适的人不一定要|合适的人不一定要 情商多高
- 【38】“劳逸结合”的重要性
- GIS跨界融合赋能多领域技术升级,江淮大地新应用成果喜人
- 我的六合微生活(四十二)也说“体心胆”合练
- 21天|21天|羊多多组合《书都不会读,你还想成功》
- 休赛期3全明星去哪队算合理(詹皇该选火箭,考神不必留鹈鹕!)
- 勿花费太多时间纠结在不合适的人身上——日更40