HBase 的性能优化


本文主要是从HBase应用程序设计与开发的角度,总结几种常用的性能优化方法。
Auto Flash
通过调用HTable.setAutoFlushTo(false)方法可以将HTable写客户端自动flush关闭,这样可以批量写入数据到HBase,而不是有一条put就执行一次更新,只有当put填满客户端写缓存的时候,才会向HBase服务端发起写请求。默认情况下auto flush是开启的。
Write Buffer
通过调用HTable.setWriteBufferSize(writeBufferSize)方法可以设置HTable客户端的写buffer大小,如果新设置的buffer小于当前写buffer中的数据时,buffer将会被flush到服务端。其中,writeBufferSize的单位是byte字节数,可以根基实际写入数据量的多少来设置该值。
注:Write Buffer存在于客户端的本地内存中,那么当客户端运行出现问题时,会导致在Write Buffer中未提交的数据丢失;由于HBase服务端还未收到这些数据,因此也无法通过WAL日志等方式进行数据恢复。其次,Write Buffer方式本身会占用客户端和HBase服务端的内存开销。
WAL Flag
在HBase中,客户端向集群中的RegionServer提交数据时(Put/Delete操作),首先会写到WAL(Write Ahead Log)日志,即HLog,一个RegionServer上的所有Region共享一个HLog,只有当WAL日志写成功后,再接着写MemStore,然后客户端被通知提交数据成功,如果写WAL日志失败,客户端被告知提交失败,这样做的好处是可以做到RegionServer宕机后的数据恢复。对于不太重要的数据,可以在Put/Delete操作时,通过调用Put.setWriteToWAL(false)Delete.setWriteToWAL(false)函数,放弃写WAL日志,以提高数据写入的性能。
注:如果关闭WAL日志,一旦RegionServer宕机,Put/Delete的数据将会无法根据WAL日志进行恢复。
Compression 压缩
数据量大,边压边写也会提升性能的,毕竟IO是大数据的最严重的瓶颈,哪怕使用了SSD也是一样。众多的压缩方式中,推荐使用SNAPPY。从压缩率和压缩速度来看,性价比最高。
HColumnDescriptor hcd = new HColumnDescriptor(familyName); hcd.setCompressionType(Algorithm.SNAPPY);

批量写
通过调用HTable.put(Put)方法可以将一个指定的row key记录写入HBase,同样HBase提供了另一个方法:通过调用HTable.put(List)方法可以将指定的row key列表,批量写入多行记录,这样做的好处是批量执行,只需要一次网络I/O开销,这对于对数据实时性要求高,网络传输RTT高的情景下可能带来明显的性能提升。
多线程并发写
在客户端开启多个 HTable 写线程,每个写线程负责一个 HTable 对象的 flush 操作,这样结合定时 flush 和写 buffer(writeBufferSize),可以既保证在数据量小的时候,数据可以在较短时间内被 flush(如1秒内),同时又保证在数据量大的时候,写 buffer 一满就及时进行 flush。
批量读
通过调用 HTable.get(Get) 方法可以根据一个指定的 row key 获取一行记录,同样 HBase 提供了另一个方法:通过调用 HTable.get(List) 方法可以根据一个指定的 row key 列表,批量获取多行记录,这样做的好处是批量执行,只需要一次网络 I/O 开销,这对于对数据实时性要求高而且网络传输 RTT 高的情景下可能带来明显的性能提升。
缓存查询结果
对于频繁查询 HBase 的应用场景,可以考虑在应用程序中做缓存,当有新的查询请求时,首先在缓存中查找,如果存在则直接返回,不再查询 HBase;否则对 HBase 发起读请求查询,然后在应用程序中将查询结果缓存起来。至于缓存的替换策略,可以考虑 LRU 等常用的策略。
HBase数据表优化 预分区
默认情况下,在创建HBase表的时候会自动创建一个Region分区,当导入数据的时候,所有的HBase客户端都向Region写数据,知道这个Region足够大才进行切分,一种可以加快批量写入速度的方法是通过预先创建一些空的Regions,这样当数据写入HBase的时候,会按照Region分区情况,在进群内做数据的负载均衡。
Rowkey优化
rowkey是按照字典存储,因此设置rowkey时,要充分利用排序特点,将经常一起读取的数据存储到一块,将最近可能会被访问的数据放到一块。
rowkey若是递增生成的,建议不要使用正序直接写入,可以使用字符串反转方式写入,使得rowkey大致均衡分布,这样设计的好处是能将RegionServer的负载均衡,否则容易产生所有新数据都在集中在一个RegionServer上堆积的现象,这一点还可以结合table的与分区设计。
Rowkey 设计时可以参考以下原则:
1. 唯一性原则:索引的设计要保证其唯一性。
2. 长度原则:Rowkey是一个二进制码流,Rowkey的长度被很多开发者建议说设计在10~100个字节,不过建议是越短越好,不要超过16个字节。
原因如下:
(1)数据的持久化文件HFile中是按照KeyValue存储的,如果Rowkey过长比如100个字节,1000万列数据光Rowkey就要占用100*1000万=10亿个字节,将近1G数据,这会极大影响HFile的存储效率;
(2)MemStore将缓存部分数据到内存,如果Rowkey字段过长内存的有效利用率会降低,系统将无法缓存更多的数据,这会降低检索效率。因此Rowkey的字节长度越短越好。
(3)目前操作系统是都是64位系统,内存8字节对齐。控制在16个字节,8字节的整数倍利用操作系统的最佳特性。
3. 散列原则:

如果Rowkey是按时间戳的方式递增,不要将时间放在二进制码的前面,建议将Rowkey的高位作为散列字段,由程序循环生成,低位放时间字段, 这样将提高数据均衡分布在每个Regionserver实现负载均衡的几率。如果没有散列字段,首字段直接是时间信息将产生所有新数据都在一个 RegionServer上堆积的热点现象,这样在做数据检索的时候负载将会集中在个别RegionServer,降低查询效率。
Rowkey 散列的方法:
1.随机数
2.Uuid
3.Md5,hash 等加密算法
4.业务有序数据反向(对业务有序数据进行reverse)
4.索引原则:

Rowkey 是hbase 里面唯一的索引,对于某些查询比较频繁的限定条件数据需要把其内容放在rowkey里面。
减少Column Family数量
不要在一张表中定义太多的column family。目前HBase并不能很好的处理超过2-3个column family的表,因为某个column family在flush的时候,它临近的column family也会因关联效应被触发flush,最终导致系统产生更过的I/O;
设置最大版本数
创建表的时候,可以通过 HColumnDescriptor.setMaxVersions(int maxVersions) 设置表中数据的最大版本,如果只需要保存最新版本的数据,那么可以设置 setMaxVersions(1)。
缓存策略(setCaching)
创建表的时候,可以通过HColumnDEscriptor.setInMemory(true)将表放到RegionServer的缓存中,保证在读取的时候被cache命中。
设置存储生命期
创建表的时候,可以通过HColumnDescriptor.setTimeToLive(int timeToLive)设置表中数据的存储生命周期,过期数据将自动被删除
磁盘配置
每台RegionServer管理10-1000个Regions。每个Region在1-2G,则每台server最少要10G,最大要1000*2G=2TB,考虑3备份,需要6TB。方案1是3块2TB磁盘,2是12块500G磁盘,带宽足够时,后者能提供更大的吞吐率,更细力度的冗余备份,更快速的单盘故障恢复。
分配何时的内存给RegionServer
在不影响其他服务的情况下,越大越好。在HBase的conf目录下的hbase-env.sh的最后添加export HBASE_REGIONSERVER_OPTS="- Xmx16000m $HBASE_REGIONSERVER_OPTS"
其中16000m为分配给REgionServer的内存大小。
写数据的备份数
备份数与读性能是成正比,与写性能成反比,且备份数影响高可用性。有两种配置方式,一种是将hdfs-site.xml拷贝到hbase的conf目录下,然后在其中添加或修改配置项dfs.replication的值为要设置的备份数,这种修改所有的HBase用户都生效。另一种方式是改写HBase代码,让HBase支持针对列族设置备份数,在创建表时,设置列族备份数,默认为3,此种备份数支队设置的列族生效。
客户端一次从服务器拉取的数量
通过配置一次拉取较大的数据量可以减少客户端获取数据的时间,但是他会占用客户端的内存,有三个地方可以进行配置
  1. 在HBase的conf配置文件中进行配置hbase.client.scanner.caching;
  2. 通过调用HTble.setScannerCaching(int scannerCaching)进行配置;
  3. 通过调用Sacn.setCaching(int caching)进行配置,三者的优先级越来越高。
客户端拉取的时候指定列族
scan是指定需要column family,可以减少网络传输数据量,否则默认scan操作会返回整行所有column family的数据
拉取完数据之后关闭ResultScanner
通过 scan 取完数据后,记得要关闭 ResultScanner,否则 RegionServer 可能会出现问题(对应的 Server 资源无法释放)。
RegionServer的请求处理IO线程数
较少的IO线程适用于处理单次请求内存消耗较高的Big Put场景(大容量单词Put或设置了较大cache的scan,均数据Big Put)或RegionServer的内存比较紧张的场景。
较多的IO线程,适用于单次请求内存消耗低,TPS要求(每次事务处理量)非常高的场景。这只该值的时候,以监控内存为主要参考
在hbase-site.xml配置文件中配置项为hbase.regionserver.handle.count
Region大小设置
配置项hbase.hregion.max.filesize,所属配置文件为hbase-site.xml,默认大小是256m。
在当前RegionServer上单个Region的最大存储空间,单个Region超过该值时,这个Region会被自动split成更小的Region。小Region对split和compaction友好,因为拆分Region或compact小Region里的StoreFile速度非常快,内存占用低。缺点是split和compaction会很频繁,特别是数量较多的小Region不同的split,compaction,会导致集群响应时间波动很大,Region数量太多不仅给管理上带来麻烦,设置会引起一些HBase个bug。一般 512M 以下的都算小 Region。大 Region 则不太适合经常 split 和 compaction,因为做一次 compact 和 split 会产生较长时间的停顿,对应用的读写性能冲击非常大。
【HBase 的性能优化】此外,大 Region 意味着较大的 StoreFile,compaction 时对内存也是一个挑战。如果你的应用场景中,某个时间点的访问量较低,那么在此时做 compact 和 split,既能顺利完成 split 和 compaction,又能保证绝大多数时间平稳的读写性能。compaction 是无法避免的,split 可以从自动调整为手动。只要通过将这个参数值调大到某个很难达到的值,比如 100G,就可以间接禁用自动 split(RegionServer 不会对未到达 100G 的 Region 做 split)。再配合 RegionSplitter 这个工具,在需要 split 时,手动 split。手动 split 在灵活性和稳定性上比起自动 split 要高很多,而且管理成本增加不多,比较推荐 online 实时系统使用。内存方面,小 Region 在设置 memstore 的大小值上比较灵活,大 Region 则过大过小都不行,过大会导致 flush 时 app 的 IO wait 增高,过小则因 StoreFile 过多影响读性能。


作者:digger30
链接:https://www.jianshu.com/p/1dbf52073132
來源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

    推荐阅读