python|如何使用hadoop进行Bert tokenize

任务是统计bert tokenize的后的word count
需要代码mapper,reducer,Shell脚本
【python|如何使用hadoop进行Bert tokenize】 首先是实现Bert tokenizer通过sys.stdin 读取文件,将结果直接输出

# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # #http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes."""from __future__ import absolute_import, division, print_function, unicode_literalsimport collections import logging import os import unicodedata import sys from io import open#from .file_utils import cached_pathlogger = logging.getLogger(__name__)PRETRAINED_VOCAB_ARCHIVE_MAP = { 'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt", 'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-vocab.txt", 'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-vocab.txt", 'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-vocab.txt", 'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-vocab.txt", 'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-vocab.txt", 'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-vocab.txt", } PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP = { 'bert-base-uncased': 512, 'bert-large-uncased': 512, 'bert-base-cased': 512, 'bert-large-cased': 512, 'bert-base-multilingual-uncased': 512, 'bert-base-multilingual-cased': 512, 'bert-base-chinese': 512, } VOCAB_NAME = 'vocab.txt'def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() index = 0 with open(vocab_file, "r", encoding="utf-8") as reader: while True: token = reader.readline() if not token: break token = token.strip() vocab[token] = index index += 1 return vocabdef whitespace_tokenize(text): """Runs basic whitespace cleaning and splitting on a piece of text.""" text = text.strip() if not text: return [] tokens = text.split() return tokensclass BertTokenizer(object): """Runs end-to-end tokenization: punctuation splitting + wordpiece"""def __init__(self, vocab_file, do_lower_case=True, max_len=None, do_basic_tokenize=True, never_split=("[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]", "[SPA]")): """Constructs a BertTokenizer.Args: vocab_file: Path to a one-wordpiece-per-line vocabulary file do_lower_case: Whether to lower case the input Only has an effect when do_wordpiece_only=False do_basic_tokenize: Whether to do basic tokenization before wordpiece. max_len: An artificial maximum length to truncate tokenized sequences to; Effective maximum length is always the minimum of this value (if specified) and the underlying BERT model's sequence length. never_split: List of tokens which will never be split during tokenization. Only has an effect when do_wordpiece_only=False """ if not os.path.isfile(vocab_file): raise ValueError( "Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained " "model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format(vocab_file)) self.vocab = load_vocab(vocab_file) self.ids_to_tokens = collections.OrderedDict( [(ids, tok) for tok, ids in self.vocab.items()]) self.do_basic_tokenize = do_basic_tokenize if do_basic_tokenize: self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case, never_split=never_split) self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab) self.max_len = max_len if max_len is not None else int(1e12)def tokenize(self, text, keep_unk=False, keep_space=False): if self.do_basic_tokenize: split_tokens = [] for token in self.basic_tokenizer.tokenize(text, keep_space=keep_space): for sub_token in self.wordpiece_tokenizer.tokenize(token, keep_unk=keep_unk): split_tokens.append(sub_token) else: split_tokens = self.wordpiece_tokenizer.tokenize(text) return split_tokensdef convert_tokens_to_ids(self, tokens): """Converts a sequence of tokens into ids using the vocab.""" ids = [] for token in tokens: ids.append(self.vocab[token]) if len(ids) > self.max_len: logger.warning( "Token indices sequence length is longer than the specified maximum " " sequence length for this BERT model ({} > {}). Running this" " sequence through BERT will result in indexing errors".format(len(ids), self.max_len) ) return idsdef convert_ids_to_tokens(self, ids): """Converts a sequence of ids in wordpiece tokens using the vocab.""" tokens = [] for i in ids: tokens.append(self.ids_to_tokens[i]) return tokens@classmethod def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs): """ Instantiate a PreTrainedBertModel from a pre-trained model file. Download and cache the pre-trained model file if needed. """ if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP: vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name_or_path] else: vocab_file = pretrained_model_name_or_path if os.path.isdir(vocab_file): vocab_file = os.path.join(vocab_file, VOCAB_NAME) # redirect to the cache, if necessary try: resolved_vocab_file = vocab_file except EnvironmentError: logger.error( "Model name '{}' was not found in model name list ({}). " "We assumed '{}' was a path or url but couldn't find any file " "associated to this path or url.".format( pretrained_model_name_or_path, ', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()), vocab_file)) return None if resolved_vocab_file == vocab_file: logger.info("loading vocabulary file {}".format(vocab_file)) else: logger.info("loading vocabulary file {} from cache at {}".format( vocab_file, resolved_vocab_file)) if pretrained_model_name_or_path in PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP: # if we're using a pretrained model, ensure the tokenizer wont index sequences longer # than the number of positional embeddings max_len = PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP[pretrained_model_name_or_path] kwargs['max_len'] = min(kwargs.get('max_len', int(1e12)), max_len) # Instantiate tokenizer. tokenizer = cls(resolved_vocab_file, *inputs, **kwargs) return tokenizerclass BasicTokenizer(object): """Runs basic tokenization (punctuation splitting, lower casing, etc.)."""def __init__(self, do_lower_case=True, never_split=("[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]", "[SPA]")): """Constructs a BasicTokenizer.Args: do_lower_case: Whether to lower case the input. """ self.do_lower_case = do_lower_case self.never_split = never_splitdef tokenize(self, text, keep_space=False): """Tokenizes a piece of text.""" text = self._clean_text(text, keep_space=keep_space) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). text = self._tokenize_chinese_chars(text) orig_tokens = whitespace_tokenize(text) split_tokens = [] for token in orig_tokens: if self.do_lower_case and token not in self.never_split: token = token.lower() token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token))output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokensdef _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output)def _run_split_on_punc(self, text): """Splits punctuation on a piece of text.""" if text in self.never_split: return [text] chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1return ["".join(x) for x in output]def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output)def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: #https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ((cp >= 0x4E00 and cp <= 0x9FFF) or# (cp >= 0x3400 and cp <= 0x4DBF) or# (cp >= 0x20000 and cp <= 0x2A6DF) or# (cp >= 0x2A700 and cp <= 0x2B73F) or# (cp >= 0x2B740 and cp <= 0x2B81F) or# (cp >= 0x2B820 and cp <= 0x2CEAF) or (cp >= 0xF900 and cp <= 0xFAFF) or# (cp >= 0x2F800 and cp <= 0x2FA1F)):# return Truereturn Falsedef _clean_text(self, text, keep_space=False): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xfffd or _is_control(char): continue if _is_whitespace(char): if keep_space: output.append(" [SPA] ") else: output.append(" ") else: output.append(char) return "".join(output)class WordpieceTokenizer(object): """Runs WordPiece tokenization."""def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=100): self.vocab = vocab self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_worddef tokenize(self, text, keep_unk=False): """Tokenizes a piece of text into its word pieces.This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary.For example: input = "unaffable" output = ["un", "##aff", "##able"]Args: text: A single token or whitespace separated tokens. This should have already been passed through `BasicTokenizer`.Returns: A list of wordpiece tokens. """output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk_token) continueis_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if start > 0: substr = "##" + substr if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: is_bad = True break sub_tokens.append(cur_substr) start = endif is_bad: if keep_unk: output_tokens.append(token) else: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokensdef _is_whitespace(char): """Checks whether `chars` is a whitespace character.""" # \t, \n, and \r are technically contorl characters but we treat them # as whitespace since they are generally considered as such. if char == " " or char == "\t" or char == "\n" or char == "\r": return True cat = unicodedata.category(char) if cat == "Zs": return True return Falsedef _is_control(char): """Checks whether `chars` is a control character.""" # These are technically control characters but we count them as whitespace # characters. if char == "\t" or char == "\n" or char == "\r": return False cat = unicodedata.category(char) if cat.startswith("C"): return True return Falsedef _is_punctuation(char): """Checks whether `chars` is a punctuation character.""" cp = ord(char) # We treat all non-letter/number ASCII as punctuation. # Characters such as "^", "$", and "`" are not in the Unicode # Punctuation class but we treat them as punctuation anyways, for # consistency. if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)): return True cat = unicodedata.category(char) if cat.startswith("P"): return True return Falseif __name__ == '__main__': tokenizer = BertTokenizer('vocab.txt', do_lower_case=True) data_type = ["baike", "news_old", "news_new", "zhidao"]for line in sys.stdin: word_dict ={} line = line.strip() try: label,raw_data=https://www.it610.com/article/line.split("\t",1) except: continue if(label in data_type): line = raw_data tokens = tokenizer.tokenize(line) for token in tokens: if token not in word_dict: word_dict[token] = 1 else: word_dict[token] += 1 for k,v in word_dict.items(): print(k+"\t"+str(v))

reducer 将相同词合并
# -*- coding:utf-8 -*- # Copyright ? 2016 - 2020 Steven Yang. import sys if __name__ == '__main__': cur_word =None cur_cnt = 0 word =None for line in sys.stdin: word,cnt=line.strip("\n").rsplit("\t",1) cnt = int(cnt) if cur_word == word: cur_cnt += cnt else: if cur_word: print("{}\t{}".format(cur_word,cur_cnt)) cur_word = word cur_cnt = cnt if word: print("{}\t{}".format(word, cur_cnt))

测试mapper&reducer
echo "麻瓜麻瓜hahah你这个麻瓜" | python3 tokenize_mapper.py | sort | python3 tokenize_reducer.py

hadoop 执行脚本
#!/bin/shhadoop=/usr/bin/hadoop$hadoop fs -rmr pretrain/tmp$hadoop jar /usr/hdp/3.1.4.0-315/hadoop-mapreduce/hadoop-streaming.jar \ -D tez.queue.name=test \ -cacheArchive hdfs://hadoop/user/UserName/py3_lib/python.tar.gz#python \ -cacheArchive hdfs://hadoop/user/UserName/cache_dict/vocab.txt#vocab.txt \ -input pretrain/raw/baike.txt,pretrain/raw/zhidao.txt,pretrain/raw/news_new.txt,pretrain/raw/news_old.txt,pretrain/clean/tieba_cl.txt \ -output pretrain/tmp/\ -file tokenize_mapper.py \ -file tokenize_reducer.py \ -mapper "python/python/bin/python3 tokenize_mapper.py" \ -reducer "python/python/bin/python3 tokenize_reducer.py" #-file concat_tieba_session.py\


    推荐阅读