ArrayList的简单了解

有些东西还没做学习,学习完后补充

/* * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved. * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. * * * * * * * * * * * * * * * * * * * * */package java.util; import java.util.function.Consumer; import java.util.function.Predicate; import java.util.function.UnaryOperator; import sun.misc.SharedSecrets; /** * Resizable-array implementation of the List interface.Implements * all optional list operations, and permits all elements, including * null.In addition to implementing the List interface, * this class provides methods to manipulate the size of the array that is * used internally to store the list.(This class is roughly equivalent to * Vector, except that it is unsynchronized.) * * The size, isEmpty, get, set, * iterator, and listIterator operations run in constant * time.The add operation runs in amortized constant time, * that is, adding n elements requires O(n) time.All of the other operations * run in linear time (roughly speaking).The constant factor is low compared * to that for the LinkedList implementation. * * Each ArrayList instance has a capacity.The capacity is * the size of the array used to store the elements in the list.It is always * at least as large as the list size.As elements are added to an ArrayList, * its capacity grows automatically.The details of the growth policy are not * specified beyond the fact that adding an element has constant amortized * time cost. * * An application can increase the capacity of an ArrayList instance * before adding a large number of elements using the ensureCapacity * operation.This may reduce the amount of incremental reallocation. * * Note that this implementation is not synchronized. * If multiple threads access an ArrayList instance concurrently, * and at least one of the threads modifies the list structurally, it * must be synchronized externally.(A structural modification is * any operation that adds or deletes one or more elements, or explicitly * resizes the backing array; merely setting the value of an element is not * a structural modification.)This is typically accomplished by * synchronizing on some object that naturally encapsulates the list. * * If no such object exists, the list should be "wrapped" using the * {@link Collections#synchronizedList Collections.synchronizedList} * method.This is best done at creation time, to prevent accidental * unsynchronized access to the list:
*List list = Collections.synchronizedList(new ArrayList(...));

* * * The iterators returned by this class's {@link #iterator() iterator} and * {@link #listIterator(int) listIterator} methods are fail-fast: * if the list is structurally modified at any time after the iterator is * created, in any way except through the iterator's own * {@link ListIterator#remove() remove} or * {@link ListIterator#add(Object) add} methods, the iterator will throw a * {@link ConcurrentModificationException}.Thus, in the face of * concurrent modification, the iterator fails quickly and cleanly, rather * than risking arbitrary, non-deterministic behavior at an undetermined * time in the future. * * Note that the fail-fast behavior of an iterator cannot be guaranteed * as it is, generally speaking, impossible to make any hard guarantees in the * presence of unsynchronized concurrent modification.Fail-fast iterators * throw {@code ConcurrentModificationException} on a best-effort basis. * Therefore, it would be wrong to write a program that depended on this * exception for its correctness:the fail-fast behavior of iterators * should be used only to detect bugs. * * This class is a member of the * * Java Collections Framework. * * @authorJosh Bloch * @authorNeal Gafter * @seeCollection * @seeList * @seeLinkedList * @seeVector * @since1.2 */public class ArrayList extends AbstractList implements List, RandomAccess, Cloneable, java.io.Serializable { private static final long serialVersionUID = 8683452581122892189L; /** * Default initial capacity. */ private static final int DEFAULT_CAPACITY = 10; /** * Shared empty array instance used for empty instances. */ private static final Object[] EMPTY_ELEMENTDATA = https://www.it610.com/article/{}; /** * Shared empty array instance used for default sized empty instances. We * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when * first element is added. */ private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {}; /** * The array buffer into which the elements of the ArrayList are stored. * The capacity of the ArrayList is the length of this array buffer. Any * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA * will be expanded to DEFAULT_CAPACITY when the first element is added. */ transient Object[] elementData; // non-private to simplify nested class access/** * The size of the ArrayList (the number of elements it contains). * * @serial */ private int size; /** * Constructs an empty list with the specified initial capacity. * * @paraminitialCapacitythe initial capacity of the list * @throws IllegalArgumentException if the specified initial capacity *is negative */ public ArrayList(int initialCapacity) { //构造函数,指定数组大小 if (initialCapacity> 0) { this.elementData = https://www.it610.com/article/new Object[initialCapacity]; } else if (initialCapacity == 0) { this.elementData = EMPTY_ELEMENTDATA; //赋值为空数组 } else { throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity); } }/** * Constructs an empty list with an initial capacity of ten. */ public ArrayList() { this.elementData = https://www.it610.com/article/DEFAULTCAPACITY_EMPTY_ELEMENTDATA; //默认为空数组{} }/** * Constructs a list containing the elements of the specified * collection, in the order they are returned by the collection's * iterator. * * @param c the collection whose elements are to be placed into this list * @throws NullPointerException if the specified collection is null */ public ArrayList(Collection c) { elementData = https://www.it610.com/article/c.toArray(); if ((size = elementData.length) != 0) { // c.toArray might (incorrectly) not return Object[] (see 6260652) if (elementData.getClass() != Object[].class) elementData = Arrays.copyOf(elementData, size, Object[].class); //由于toArray的原因,可能出现返回的数组不是Object类型 /* 可以百度JavaBug6260652,主要的问题就是Arrays.asList方法 源码如下: public static List asList(T... a) { return new ArrayList<>(a); } 可以看到返回的是一个ArrayList,这个ArrayList是Arrays内部定义的 再来看ArrayList的源码 ArrayList(E[] array) { a = Objects.requireNonNull(array); } 可以看到调用了Objects的方法,再来定位到该方法 public static T requireNonNull(T obj) { if (obj == null) throw new NullPointerException(); return obj; } 该方法就是返回原始对象,类型就是原始对象的类型 可以看到在ArrayList(Collection c)方法中, elementData = https://www.it610.com/article/c.toArray(); 开始elementData直接就赋值为c.toArray(); 我们来查看Array中的ArrayList的toArray方法 public Object[] toArray() { return a.clone(); } 可以看到就是返回a的副本所以最终会导致elementData的类型被改变 我们看一下elementData的原始类型是什么 transient Object[] elementData; 可以看到elementData原本是Object的,可以保存任意值,如果类型发生 改变,那么将只能存储指定类型的值,显然这是不行的*/ } else { // replace with empty array. this.elementData = EMPTY_ELEMENTDATA; } }/** * Trims the capacity of this ArrayList instance to be the * list's current size.An application can use this operation to minimize * the storage of an ArrayList instance. */ public void trimToSize() {//去除elementData空白的元素,将大小变为size modCount++; if (size < elementData.length) { elementData = https://www.it610.com/article/(size == 0) ? EMPTY_ELEMENTDATA : Arrays.copyOf(elementData, size); } }/** * Increases the capacity of this ArrayList instance, if * necessary, to ensure that it can hold at least the number of elements * specified by the minimum capacity argument. * * @paramminCapacitythe desired minimum capacity */ public void ensureCapacity(int minCapacity) {//确保数据的大小可以存储size+1个元素 int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA) // any size if not default element table ? 0 // larger than default for default empty table. It's already // supposed to be at default size. : DEFAULT_CAPACITY; //10if (minCapacity > minExpand) { ensureExplicitCapacity(minCapacity); } }private static int calculateCapacity(Object[] elementData, int minCapacity) {//计算容量 if (elementData =https://www.it610.com/article/= DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {//如果数组还是空的,返回默认容量10和minCapacity的最大值 return Math.max(DEFAULT_CAPACITY, minCapacity); } return minCapacity; }private void ensureCapacityInternal(int minCapacity) { ensureExplicitCapacity(calculateCapacity(elementData, minCapacity)); }private void ensureExplicitCapacity(int minCapacity) { modCount++; // overflow-conscious code if (minCapacity - elementData.length> 0)//如果此时数组容量小于要存储数据的容量,进行扩容 grow(minCapacity); }/** * The maximum size of array to allocate. * Some VMs reserve some header words in an array. * Attempts to allocate larger arrays may result in * OutOfMemoryError: Requested array size exceeds VM limit */ private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; /** * Increases the capacity to ensure that it can hold at least the * number of elements specified by the minimum capacity argument. * * @param minCapacity the desired minimum capacity */ private void grow(int minCapacity) { // overflow-conscious code int oldCapacity = elementData.length; int newCapacity = oldCapacity + (oldCapacity >> 1); //将容量变为原来的1.5倍 if (newCapacity - minCapacity < 0)//如果1.5倍还是不能存储,将容量变为minCapacity newCapacity = minCapacity; if (newCapacity - MAX_ARRAY_SIZE > 0)//MAX_ARRAY_SIZE=int最大值-8 newCapacity = hugeCapacity(minCapacity); // minCapacity is usually close to size, so this is a win: elementData = https://www.it610.com/article/Arrays.copyOf(elementData, newCapacity); }private static int hugeCapacity(int minCapacity) {//数组的最大容量为int的最大值 if (minCapacity < 0) // overflow throw new OutOfMemoryError(); return (minCapacity> MAX_ARRAY_SIZE) ? Integer.MAX_VALUE : MAX_ARRAY_SIZE; }/** * Returns the number of elements in this list. * * @return the number of elements in this list */ public int size() { return size; }/** * Returns true if this list contains no elements. * * @return true if this list contains no elements */ public boolean isEmpty() { return size == 0; }/** * Returns true if this list contains the specified element. * More formally, returns true if and only if this list contains * at least one element e such that * (o==null  ?  e==null  :  o.equals(e)). * * @param o element whose presence in this list is to be tested * @return true if this list contains the specified element */ public boolean contains(Object o) { return indexOf(o) >= 0; }/** * Returns the index of the first occurrence of the specified element * in this list, or -1 if this list does not contain the element. * More formally, returns the lowest index i such that * (o==null  ?  get(i)==null  :  o.equals(get(i))), * or -1 if there is no such index. */ public int indexOf(Object o) {//从前往后for循环遍历查找元素 if (o == null) { for (int i = 0; i < size; i++) if (elementData[i]==null) return i; } else { for (int i = 0; i < size; i++) if (o.equals(elementData[i])) return i; } return -1; }/** * Returns the index of the last occurrence of the specified element * in this list, or -1 if this list does not contain the element. * More formally, returns the highest index i such that * (o==null  ?  get(i)==null  :  o.equals(get(i))), * or -1 if there is no such index. */ public int lastIndexOf(Object o) {//从后往前佛如循环查找元素 if (o == null) { for (int i = size-1; i >= 0; i--) if (elementData[i]==null) return i; } else { for (int i = size-1; i >= 0; i--) if (o.equals(elementData[i])) return i; } return -1; }/** * Returns a shallow copy of this ArrayList instance.(The * elements themselves are not copied.) * * @return a clone of this ArrayList instance */ public Object clone() {//深拷贝 try { ArrayList v = (ArrayList) super.clone(); v.elementData = https://www.it610.com/article/Arrays.copyOf(elementData, size); v.modCount = 0; return v; } catch (CloneNotSupportedException e) { // this shouldn't happen, since we are Cloneable throw new InternalError(e); } }/** * Returns an array containing all of the elements in this list * in proper sequence (from first to last element). * * The returned array will be "safe" in that no references to it are * maintained by this list.(In other words, this method must allocate * a new array).The caller is thus free to modify the returned array. * * This method acts as bridge between array-based and collection-based * APIs. * * @return an array containing all of the elements in this list in *proper sequence */ public Object[] toArray() { return Arrays.copyOf(elementData, size); }/** * Returns an array containing all of the elements in this list in proper * sequence (from first to last element); the runtime type of the returned * array is that of the specified array.If the list fits in the * specified array, it is returned therein.Otherwise, a new array is * allocated with the runtime type of the specified array and the size of * this list. * * If the list fits in the specified array with room to spare * (i.e., the array has more elements than the list), the element in * the array immediately following the end of the collection is set to * null.(This is useful in determining the length of the * list only if the caller knows that the list does not contain * any null elements.) * * @param a the array into which the elements of the list are to *be stored, if it is big enough; otherwise, a new array of the *same runtime type is allocated for this purpose. * @return an array containing the elements of the list * @throws ArrayStoreException if the runtime type of the specified array *is not a supertype of the runtime type of every element in *this list * @throws NullPointerException if the specified array is null */ @SuppressWarnings("unchecked") public T[] toArray(T[] a) { if (a.length < size) // Make a new array of a's runtime type, but my contents: return (T[]) Arrays.copyOf(elementData, size, a.getClass()); System.arraycopy(elementData, 0, a, 0, size); if (a.length > size) a[size] = null; return a; }// Positional Access Operations@SuppressWarnings("unchecked") E elementData(int index) {//得到指定下标的值 return (E) elementData[index]; }/** * Returns the element at the specified position in this list. * * @paramindex index of the element to return * @return the element at the specified position in this list * @throws IndexOutOfBoundsException {@inheritDoc} */ public E get(int index) {//得到指定下标的值 rangeCheck(index); //检测index是否越界return elementData(index); }/** * Replaces the element at the specified position in this list with * the specified element. * * @param index index of the element to replace * @param element element to be stored at the specified position * @return the element previously at the specified position * @throws IndexOutOfBoundsException {@inheritDoc} */ public E set(int index, E element) {//设置指定下标的值 rangeCheck(index); E oldValue = https://www.it610.com/article/elementData(index); elementData[index] = element; return oldValue; }/** * Appends the specified element to the end of this list. * * @param e element to be appended to this list * @return true (as specified by {@link Collection#add}) */ public boolean add(E e) {//添加元素 ensureCapacityInternal(size + 1); // Increments modCount!! elementData[size++] = e; return true; }/** * Inserts the specified element at the specified position in this * list. Shifts the element currently at that position (if any) and * any subsequent elements to the right (adds one to their indices). * * @param index index at which the specified element is to be inserted * @param element element to be inserted * @throws IndexOutOfBoundsException {@inheritDoc} */ public void add(int index, E element) {//在指定下标处,插入值,数组要后移,耗时操作 rangeCheckForAdd(index); ensureCapacityInternal(size + 1); // Increments modCount!! System.arraycopy(elementData, index, elementData, index + 1, size - index); elementData[index] = element; size++; }/** * Removes the element at the specified position in this list. * Shifts any subsequent elements to the left (subtracts one from their * indices). * * @param index the index of the element to be removed * @return the element that was removed from the list * @throws IndexOutOfBoundsException {@inheritDoc} */ public E remove(int index) {//移除指定下标的值 rangeCheck(index); modCount++; E oldValue = https://www.it610.com/article/elementData(index); int numMoved = size - index - 1; //计算index后有多少个元素 if (numMoved> 0) System.arraycopy(elementData, index+1, elementData, index, numMoved); elementData[--size] = null; // clear to let GC do its workreturn oldValue; }/** * Removes the first occurrence of the specified element from this list, * if it is present.If the list does not contain the element, it is * unchanged.More formally, removes the element with the lowest index * i such that * (o==null  ?  get(i)==null  :  o.equals(get(i))) * (if such an element exists).Returns true if this list * contained the specified element (or equivalently, if this list * changed as a result of the call). * * @param o element to be removed from this list, if present * @return true if this list contained the specified element */ public boolean remove(Object o) {//移除指定元素 if (o == null) { for (int index = 0; index < size; index++) if (elementData[index] == null) { fastRemove(index); return true; } } else { for (int index = 0; index < size; index++)//for循环遍历,找到元素 if (o.equals(elementData[index])) { fastRemove(index); return true; } } return false; }/* * Private remove method that skips bounds checking and does not * return the value removed. */ private void fastRemove(int index) {//和remove(index)同理 modCount++; int numMoved = size - index - 1; if (numMoved > 0) System.arraycopy(elementData, index+1, elementData, index, numMoved); elementData[--size] = null; // clear to let GC do its work }/** * Removes all of the elements from this list.The list will * be empty after this call returns. */ public void clear() {//清除所有元素 modCount++; // clear to let GC do its work for (int i = 0; i < size; i++)//将数组赋值为null,存储的引用对象不再被引用等待垃圾回收器的回收 elementData[i] = null; size = 0; }/** * Appends all of the elements in the specified collection to the end of * this list, in the order that they are returned by the * specified collection's Iterator.The behavior of this operation is * undefined if the specified collection is modified while the operation * is in progress.(This implies that the behavior of this call is * undefined if the specified collection is this list, and this * list is nonempty.) * * @param c collection containing elements to be added to this list * @return true if this list changed as a result of the call * @throws NullPointerException if the specified collection is null */ public boolean addAll(Collection c) {//批量添加元素 Object[] a = c.toArray(); int numNew = a.length; ensureCapacityInternal(size + numNew); // Increments modCount System.arraycopy(a, 0, elementData, size, numNew); size += numNew; return numNew != 0; }/** * Inserts all of the elements in the specified collection into this * list, starting at the specified position.Shifts the element * currently at that position (if any) and any subsequent elements to * the right (increases their indices).The new elements will appear * in the list in the order that they are returned by the * specified collection's iterator. * * @param index index at which to insert the first element from the *specified collection * @param c collection containing elements to be added to this list * @return true if this list changed as a result of the call * @throws IndexOutOfBoundsException {@inheritDoc} * @throws NullPointerException if the specified collection is null */ public boolean addAll(int index, Collection c) {//指定下标处添加 rangeCheckForAdd(index); Object[] a = c.toArray(); int numNew = a.length; ensureCapacityInternal(size + numNew); // Increments modCountint numMoved = size - index; if (numMoved > 0) System.arraycopy(elementData, index, elementData, index + numNew, numMoved); System.arraycopy(a, 0, elementData, index, numNew); size += numNew; return numNew != 0; }/** * Removes from this list all of the elements whose index is between * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive. * Shifts any succeeding elements to the left (reduces their index). * This call shortens the list by {@code (toIndex - fromIndex)} elements. * (If {@code toIndex==fromIndex}, this operation has no effect.) * * @throws IndexOutOfBoundsException if {@code fromIndex} or *{@code toIndex} is out of range *({@code fromIndex < 0 || *fromIndex >= size() || *toIndex > size() || *toIndex < fromIndex}) */ protected void removeRange(int fromIndex, int toIndex) {//移除区域内的元素 modCount++; int numMoved = size - toIndex; System.arraycopy(elementData, toIndex, elementData, fromIndex, numMoved); // clear to let GC do its work int newSize = size - (toIndex-fromIndex); for (int i = newSize; i < size; i++) { elementData[i] = null; } size = newSize; }/** * Checks if the given index is in range.If not, throws an appropriate * runtime exception.This method does *not* check if the index is * negative: It is always used immediately prior to an array access, * which throws an ArrayIndexOutOfBoundsException if index is negative. */ private void rangeCheck(int index) { if (index >= size) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); }/** * A version of rangeCheck used by add and addAll. */ private void rangeCheckForAdd(int index) { if (index > size || index < 0) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); }/** * Constructs an IndexOutOfBoundsException detail message. * Of the many possible refactorings of the error handling code, * this "outlining" performs best with both server and client VMs. */ private String outOfBoundsMsg(int index) { return "Index: "+index+", Size: "+size; }/** * Removes from this list all of its elements that are contained in the * specified collection. * * @param c collection containing elements to be removed from this list * @return {@code true} if this list changed as a result of the call * @throws ClassCastException if the class of an element of this list *is incompatible with the specified collection * (optional) * @throws NullPointerException if this list contains a null element and the *specified collection does not permit null elements * (optional), *or if the specified collection is null * @see Collection#contains(Object) */ public boolean removeAll(Collection c) {//移除集合c中包含的元素 Objects.requireNonNull(c); return batchRemove(c, false); }/** * Retains only the elements in this list that are contained in the * specified collection.In other words, removes from this list all * of its elements that are not contained in the specified collection. * * @param c collection containing elements to be retained in this list * @return {@code true} if this list changed as a result of the call * @throws ClassCastException if the class of an element of this list *is incompatible with the specified collection * (optional) * @throws NullPointerException if this list contains a null element and the *specified collection does not permit null elements * (optional), *or if the specified collection is null * @see Collection#contains(Object) */ public boolean retainAll(Collection c) {//保留集合c中包含的元素 Objects.requireNonNull(c); return batchRemove(c, true); }private boolean batchRemove(Collection c, boolean complement) { final Object[] elementData = https://www.it610.com/article/this.elementData; int r = 0, w = 0; boolean modified = false; try { for (; r < size; r++) if (c.contains(elementData[r]) == complement) elementData[w++] = elementData[r]; } finally { // Preserve behavioral compatibility with AbstractCollection, // even if c.contains() throws. if (r != size) { System.arraycopy(elementData, r, elementData, w, size - r); w += size - r; } if (w != size) { // clear to let GC do its work for (int i = w; i < size; i++) elementData[i] = null; modCount += size - w; size = w; modified = true; } } return modified; }/** * Save the state of the ArrayList instance to a stream (that * is, serialize it). * * @serialData The length of the array backing the ArrayList *instance is emitted (int), followed by all of its elements *(each an Object) in the proper order. */ private void writeObject(java.io.ObjectOutputStream s)//序列化 throws java.io.IOException{ // Write out element count, and any hidden stuff int expectedModCount = modCount; s.defaultWriteObject(); // Write out size as capacity for behavioural compatibility with clone() s.writeInt(size); // Write out all elements in the proper order. for (int i=0; i; i++) { s.writeObject(elementData[i]); }if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } }/** * Reconstitute the ArrayList instance from a stream (that is, * deserialize it). */ private void readObject(java.io.ObjectInputStream s)//序列化 throws java.io.IOException, ClassNotFoundException { elementData = https://www.it610.com/article/EMPTY_ELEMENTDATA; // Read in size, and any hidden stuff s.defaultReadObject(); // Read in capacity s.readInt(); // ignoredif (size> 0) { // be like clone(), allocate array based upon size not capacity int capacity = calculateCapacity(elementData, size); SharedSecrets.getJavaOISAccess().checkArray(s, Object[].class, capacity); ensureCapacityInternal(size); Object[] a = elementData; // Read in all elements in the proper order. for (int i=0; i; i++) { a[i] = s.readObject(); } } }/** * Returns a list iterator over the elements in this list (in proper * sequence), starting at the specified position in the list. * The specified index indicates the first element that would be * returned by an initial call to {@link ListIterator#next next}. * An initial call to {@link ListIterator#previous previous} would * return the element with the specified index minus one. * * The returned list iterator is fail-fast. * * @throws IndexOutOfBoundsException {@inheritDoc} */ public ListIterator listIterator(int index) { if (index < 0 || index > size) throw new IndexOutOfBoundsException("Index: "+index); return new ListItr(index); }/** * Returns a list iterator over the elements in this list (in proper * sequence). * * The returned list iterator is fail-fast. * * @see #listIterator(int) */ public ListIterator listIterator() { return new ListItr(0); }/** * Returns an iterator over the elements in this list in proper sequence. * * The returned iterator is fail-fast. * * @return an iterator over the elements in this list in proper sequence */ public Iterator iterator() { return new Itr(); }/** * An optimized version of AbstractList.Itr */ private class Itr implements Iterator {//迭代器 int cursor; // index of next element to return int lastRet = -1; // index of last element returned; -1 if no such int expectedModCount = modCount; Itr() {}public boolean hasNext() { return cursor != size; }@SuppressWarnings("unchecked") public E next() {//实现next方法 checkForComodification(); int i = cursor; if (i >= size) throw new NoSuchElementException(); Object[] elementData = https://www.it610.com/article/ArrayList.this.elementData; if (i>= elementData.length) throw new ConcurrentModificationException(); cursor = i + 1; return (E) elementData[lastRet = i]; }public void remove() { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { ArrayList.this.remove(lastRet); cursor = lastRet; lastRet = -1; expectedModCount = modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } }@Override @SuppressWarnings("unchecked") public void forEachRemaining(Consumer consumer) { Objects.requireNonNull(consumer); final int size = ArrayList.this.size; int i = cursor; if (i >= size) { return; } final Object[] elementData = https://www.it610.com/article/ArrayList.this.elementData; if (i>= elementData.length) { throw new ConcurrentModificationException(); } while (i != size && modCount == expectedModCount) { consumer.accept((E) elementData[i++]); } // update once at end of iteration to reduce heap write traffic cursor = i; lastRet = i - 1; checkForComodification(); }final void checkForComodification() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); } }/** * An optimized version of AbstractList.ListItr */ private class ListItr extends Itr implements ListIterator { ListItr(int index) { super(); cursor = index; }public boolean hasPrevious() { return cursor != 0; }public int nextIndex() { return cursor; }public int previousIndex() { return cursor - 1; }@SuppressWarnings("unchecked") public E previous() { checkForComodification(); int i = cursor - 1; if (i < 0) throw new NoSuchElementException(); Object[] elementData = https://www.it610.com/article/ArrayList.this.elementData; if (i>= elementData.length) throw new ConcurrentModificationException(); cursor = i; return (E) elementData[lastRet = i]; }public void set(E e) { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { ArrayList.this.set(lastRet, e); } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } }public void add(E e) { checkForComodification(); try { int i = cursor; ArrayList.this.add(i, e); cursor = i + 1; lastRet = -1; expectedModCount = modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } }/** * Returns a view of the portion of this list between the specified * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.(If * {@code fromIndex} and {@code toIndex} are equal, the returned list is * empty.)The returned list is backed by this list, so non-structural * changes in the returned list are reflected in this list, and vice-versa. * The returned list supports all of the optional list operations. * * This method eliminates the need for explicit range operations (of * the sort that commonly exist for arrays).Any operation that expects * a list can be used as a range operation by passing a subList view * instead of a whole list.For example, the following idiom * removes a range of elements from a list: *
*list.subList(from, to).clear(); *

* Similar idioms may be constructed for {@link #indexOf(Object)} and * {@link #lastIndexOf(Object)}, and all of the algorithms in the * {@link Collections} class can be applied to a subList. * * The semantics of the list returned by this method become undefined if * the backing list (i.e., this list) is structurally modified in * any way other than via the returned list.(Structural modifications are * those that change the size of this list, or otherwise perturb it in such * a fashion that iterations in progress may yield incorrect results.) * * @throws IndexOutOfBoundsException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} */ public List subList(int fromIndex, int toIndex) { subListRangeCheck(fromIndex, toIndex, size); return new SubList(this, 0, fromIndex, toIndex); }static void subListRangeCheck(int fromIndex, int toIndex, int size) { if (fromIndex < 0) throw new IndexOutOfBoundsException("fromIndex = " + fromIndex); if (toIndex > size) throw new IndexOutOfBoundsException("toIndex = " + toIndex); if (fromIndex > toIndex) throw new IllegalArgumentException("fromIndex(" + fromIndex + ") > toIndex(" + toIndex + ")"); }private class SubList extends AbstractList implements RandomAccess { private final AbstractList parent; private final int parentOffset; private final int offset; int size; SubList(AbstractList parent, int offset, int fromIndex, int toIndex) { this.parent = parent; this.parentOffset = fromIndex; this.offset = offset + fromIndex; this.size = toIndex - fromIndex; this.modCount = ArrayList.this.modCount; }public E set(int index, E e) { rangeCheck(index); checkForComodification(); E oldValue = https://www.it610.com/article/ArrayList.this.elementData(offset + index); ArrayList.this.elementData[offset + index] = e; return oldValue; }public E get(int index) { rangeCheck(index); checkForComodification(); return ArrayList.this.elementData(offset + index); }public int size() { checkForComodification(); return this.size; }public void add(int index, E e) { rangeCheckForAdd(index); checkForComodification(); parent.add(parentOffset + index, e); this.modCount = parent.modCount; this.size++; }public E remove(int index) { rangeCheck(index); checkForComodification(); E result = parent.remove(parentOffset + index); this.modCount = parent.modCount; this.size--; return result; }protected void removeRange(int fromIndex, int toIndex) { checkForComodification(); parent.removeRange(parentOffset + fromIndex, parentOffset + toIndex); this.modCount = parent.modCount; this.size -= toIndex - fromIndex; }public boolean addAll(Collection c) { return addAll(this.size, c); }public boolean addAll(int index, Collection c) { rangeCheckForAdd(index); int cSize = c.size(); if (cSize==0) return false; checkForComodification(); parent.addAll(parentOffset + index, c); this.modCount = parent.modCount; this.size += cSize; return true; }public Iterator iterator() { return listIterator(); }public ListIterator listIterator(final int index) { checkForComodification(); rangeCheckForAdd(index); final int offset = this.offset; return new ListIterator() { int cursor = index; int lastRet = -1; int expectedModCount = ArrayList.this.modCount; public boolean hasNext() { return cursor != SubList.this.size; }@SuppressWarnings("unchecked") public E next() { checkForComodification(); int i = cursor; if (i >= SubList.this.size) throw new NoSuchElementException(); Object[] elementData = https://www.it610.com/article/ArrayList.this.elementData; if (offset + i>= elementData.length) throw new ConcurrentModificationException(); cursor = i + 1; return (E) elementData[offset + (lastRet = i)]; }public boolean hasPrevious() { return cursor != 0; }@SuppressWarnings("unchecked") public E previous() { checkForComodification(); int i = cursor - 1; if (i < 0) throw new NoSuchElementException(); Object[] elementData = https://www.it610.com/article/ArrayList.this.elementData; if (offset + i>= elementData.length) throw new ConcurrentModificationException(); cursor = i; return (E) elementData[offset + (lastRet = i)]; }@SuppressWarnings("unchecked") public void forEachRemaining(Consumer consumer) { Objects.requireNonNull(consumer); final int size = SubList.this.size; int i = cursor; if (i >= size) { return; } final Object[] elementData = https://www.it610.com/article/ArrayList.this.elementData; if (offset + i>= elementData.length) { throw new ConcurrentModificationException(); } while (i != size && modCount == expectedModCount) { consumer.accept((E) elementData[offset + (i++)]); } // update once at end of iteration to reduce heap write traffic lastRet = cursor = i; checkForComodification(); }public int nextIndex() { return cursor; }public int previousIndex() { return cursor - 1; }public void remove() { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { SubList.this.remove(lastRet); cursor = lastRet; lastRet = -1; expectedModCount = ArrayList.this.modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } }public void set(E e) { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { ArrayList.this.set(offset + lastRet, e); } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } }public void add(E e) { checkForComodification(); try { int i = cursor; SubList.this.add(i, e); cursor = i + 1; lastRet = -1; expectedModCount = ArrayList.this.modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } }final void checkForComodification() { if (expectedModCount != ArrayList.this.modCount) throw new ConcurrentModificationException(); } }; }public List subList(int fromIndex, int toIndex) { subListRangeCheck(fromIndex, toIndex, size); return new SubList(this, offset, fromIndex, toIndex); }private void rangeCheck(int index) { if (index < 0 || index >= this.size) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); }private void rangeCheckForAdd(int index) { if (index < 0 || index > this.size) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); }private String outOfBoundsMsg(int index) { return "Index: "+index+", Size: "+this.size; }private void checkForComodification() { if (ArrayList.this.modCount != this.modCount) throw new ConcurrentModificationException(); }public Spliterator spliterator() { checkForComodification(); return new ArrayListSpliterator(ArrayList.this, offset, offset + this.size, this.modCount); } }@Override public void forEach(Consumer action) { Objects.requireNonNull(action); final int expectedModCount = modCount; @SuppressWarnings("unchecked") final E[] elementData = https://www.it610.com/article/(E[]) this.elementData; final int size = this.size; for (int i=0; modCount == expectedModCount && i < size; i++) { action.accept(elementData[i]); } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } }/** * Creates a late-binding * and fail-fast {@link Spliterator} over the elements in this * list. * * 【ArrayList的简单了解】The {@code Spliterator} reports {@link Spliterator#SIZED}, * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}. * Overriding implementations should document the reporting of additional * characteristic values. * * @return a {@code Spliterator} over the elements in this list * @since 1.8 */ @Override public Spliterator spliterator() { return new ArrayListSpliterator<>(this, 0, -1, 0); }/** Index-based split-by-two, lazily initialized Spliterator */ static final class ArrayListSpliterator implements Spliterator {/* * If ArrayLists were immutable, or structurally immutable (no * adds, removes, etc), we could implement their spliterators * with Arrays.spliterator. Instead we detect as much * interference during traversal as practical without * sacrificing much performance. We rely primarily on * modCounts. These are not guaranteed to detect concurrency * violations, and are sometimes overly conservative about * within-thread interference, but detect enough problems to * be worthwhile in practice. To carry this out, we (1) lazily * initialize fence and expectedModCount until the latest * point that we need to commit to the state we are checking * against; thus improving precision.(This doesn't apply to * SubLists, that create spliterators with current non-lazy * values).(2) We perform only a single * ConcurrentModificationException check at the end of forEach * (the most performance-sensitive method). When using forEach * (as opposed to iterators), we can normally only detect * interference after actions, not before. Further * CME-triggering checks apply to all other possible * violations of assumptions for example null or too-small * elementData array given its size(), that could only have * occurred due to interference.This allows the inner loop * of forEach to run without any further checks, and * simplifies lambda-resolution. While this does entail a * number of checks, note that in the common case of * list.stream().forEach(a), no checks or other computation * occur anywhere other than inside forEach itself.The other * less-often-used methods cannot take advantage of most of * these streamlinings. */private final ArrayList list; private int index; // current index, modified on advance/split private int fence; // -1 until used; then one past last index private int expectedModCount; // initialized when fence set/** Create new spliterator covering the givenrange */ ArrayListSpliterator(ArrayList list, int origin, int fence, int expectedModCount) { this.list = list; // OK if null unless traversed this.index = origin; this.fence = fence; this.expectedModCount = expectedModCount; }private int getFence() { // initialize fence to size on first use int hi; // (a specialized variant appears in method forEach) ArrayList lst; if ((hi = fence) < 0) { if ((lst = list) == null) hi = fence = 0; else { expectedModCount = lst.modCount; hi = fence = lst.size; } } return hi; }public ArrayListSpliterator trySplit() { int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; return (lo >= mid) ? null : // divide range in half unless too small new ArrayListSpliterator(list, lo, index = mid, expectedModCount); }public boolean tryAdvance(Consumer action) { if (action == null) throw new NullPointerException(); int hi = getFence(), i = index; if (i < hi) { index = i + 1; @SuppressWarnings("unchecked") E e = (E)list.elementData[i]; action.accept(e); if (list.modCount != expectedModCount) throw new ConcurrentModificationException(); return true; } return false; }public void forEachRemaining(Consumer action) { int i, hi, mc; // hoist accesses and checks from loop ArrayList lst; Object[] a; if (action == null) throw new NullPointerException(); if ((lst = list) != null && (a = lst.elementData) != null) { if ((hi = fence) < 0) { mc = lst.modCount; hi = lst.size; } else mc = expectedModCount; if ((i = index) >= 0 && (index = hi) <= a.length) { for (; i < hi; ++i) { @SuppressWarnings("unchecked") E e = (E) a[i]; action.accept(e); } if (lst.modCount == mc) return; } } throw new ConcurrentModificationException(); }public long estimateSize() { return (long) (getFence() - index); }public int characteristics() { return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED; } }@Override public boolean removeIf(Predicate filter) { Objects.requireNonNull(filter); // figure out which elements are to be removed // any exception thrown from the filter predicate at this stage // will leave the collection unmodified int removeCount = 0; final BitSet removeSet = new BitSet(size); final int expectedModCount = modCount; final int size = this.size; for (int i=0; modCount == expectedModCount && i < size; i++) { @SuppressWarnings("unchecked") final E element = (E) elementData[i]; if (filter.test(element)) { removeSet.set(i); removeCount++; } } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); }// shift surviving elements left over the spaces left by removed elements final boolean anyToRemove = removeCount > 0; if (anyToRemove) { final int newSize = size - removeCount; for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) { i = removeSet.nextClearBit(i); elementData[j] = elementData[i]; } for (int k=newSize; k < size; k++) { elementData[k] = null; // Let gc do its work } this.size = newSize; if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; }return anyToRemove; }@Override @SuppressWarnings("unchecked") public void replaceAll(UnaryOperator operator) { Objects.requireNonNull(operator); final int expectedModCount = modCount; final int size = this.size; for (int i=0; modCount == expectedModCount && i < size; i++) { elementData[i] = operator.apply((E) elementData[i]); } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; }@Override @SuppressWarnings("unchecked") public void sort(Comparator c) { final int expectedModCount = modCount; Arrays.sort((E[]) elementData, 0, size, c); if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; } }

    推荐阅读