原帖地址:http://blog.sina.com.cn/s/blog_955cedd8010130m8.html
R = mvnrnd(MU,SIGMA)——从均值为MU,协方差为SIGMA的正态分布中抽取n*d的矩阵R(n代表抽取的个数,d代表分布的维数)。
MU为n*d的矩阵,R中的每一行为以MU中对应的行为均值的正态分布中抽取的一个样本。
SIGMA为d*d的对称半正定矩阵,或者为d*d*n的array。若SIGMA为array,R中的每一行对应的分布的协方差矩阵为该array对应的一个page。也就是说:R(i,:)由MU(i,:)和SIGMA(:,:,i)产生。
如果协方差矩阵为对角阵,sigma也可用1*d向量或1*d*n的array表示,如果MU是一个1*d的向量,则SIGMA中的n个协方差矩阵共用这个MU。R的行数n由MU的行数n或者SIGMA的page数n决定。
r = mvnrnd(MU,SIGMA,cases)——从均值为MU(1*d),协方差矩阵为SIGMA(d*d)的正态分布中随机抽取cases个样本,返回cases*d的矩阵r。
不使用现成的函数,可以通过一个线性变换来实现:
我们知道,matlab产生的n维正态样本中的每个分量都是相互独立的,或者说,它的协方差矩阵是一个数量矩阵mI,如:X = randn(10000,4);
产生10000个4维分布的正态分布样本,协方差矩阵就是单位矩阵I。
定理 n维随机变量X服从正态分布N(u,B),若m维随机变量Y是X的线性变换,即Y=XC,其中C是n×m阶矩阵,则Y服从m维正态分布N(uC,C'BC)。
根据这条定理,我们可以通过一个线性变换C把协方差矩阵为I的n维正态样本变为协方差矩阵为C'C的n维正态样本。如果我们要产生协方差矩阵为R的n维正态样本,由于R为对称正定矩阵,所以有Cholesky分解: R=C'C
附:matlab程序
function Y = multivrandn(u,R,M)
% this function draws M samples from N(u,R)
% where u is the mean vector(row) and R is the covariance matrix which must be positive definite
n = length(u);
% get the dimension
C = chol(R);
% perform cholesky decomp R = C'C
X = randn(M,n);
% draw M samples from N(0,I)
【Matlab从多维正态分布中随机抽取样本(mvnrnd)】 Y = X*C + ones(M,1)*u;
推荐阅读
- 最优化问题|改进交叉算子的自适应人工蜂群黏菌算法
- matlab|嵌入均衡池的黏菌优化算法
- 最优化问题|加入领导者的黏菌优化算法
- MATLAB图形界面|基于Matlab的汽车出入库计时计费系统
- Matlab旅程|MATLAB的结构化程序设计
- matlab 内存管理 清理内存
- matlab中使用colormap没有效果
- Matlab|圆柱绕流
- MATLAB|Splart-Allmaras湍流模型及MATLAB编程~
- regionprops统计被标记的区域的面积分布,显示区域总数。