极限学习机的输入权重是随机生成的,这个因此每次的结果不一致。因此采用主成分分析,将原始数据降到N维(所设的隐含层节点数)。将得到的pca降维变换矩阵作为极限学习机的输入权重,效果更加稳定,如图所示。
文章图片
蓝颜色的是采用pca的变换矩阵做输入权重得到的图,可以看出,其分类效果较为平稳。
【基于主成分分析的极限学习机】红颜色的是随机输入权重,明显看到分类效果波动剧烈
推荐阅读
- paddle|动手从头实现LSTM
- 人工智能|干货!人体姿态估计与运动预测
- 推荐系统论文进阶|CTR预估 论文精读(十一)--Deep Interest Evolution Network(DIEN)
- Python专栏|数据分析的常规流程
- 读书笔记|《白话大数据和机器学习》学习笔记1
- Pytorch学习|sklearn-SVM 模型保存、交叉验证与网格搜索
- Python机器学习基础与进阶|Python机器学习--集成学习算法--XGBoost算法
- 深度学习|深度学习笔记总结
- 机器学习|机器学习Sklearn学习总结
- 机器学习|线性回归原理与python实现