【语义分割】Fast-SCNN|【语义分割】Fast-SCNN -- Fast Semantic Segmentation Network

paper:Fast-SCNN
github:code

文章目录

        • Abstract
        • Fast-SCNN
          • Network Architecture
          • Pre-training on Auxiliary Tasks
        • Experiment
          • 1、Evaluation on Cityscapes
          • 2、Pre-training and Weakly Labeled Data
          • 3、Lower Input Resolution

Abstract 【【语义分割】Fast-SCNN|【语义分割】Fast-SCNN -- Fast Semantic Segmentation Network】Fast-SCNN是一个实时的语义分割模型。其基于现有的two-branch方法(BiSeNet),引入了一个learning to downsample模块,在cityscapes上得到68.0%的miou。
FastSCNN采用depthwise separable convolutionsinverse residual blocks
Fast-SCNN 实时语义分割模型设计要点:
  • a larger receptive field is important to learn complex correlations among object classes (i.e. global context)
  • spatial detail in images is necessary to preserve object
    boundaries
  • balance speed and accuracy
Network Architecture 【语义分割】Fast-SCNN|【语义分割】Fast-SCNN -- Fast Semantic Segmentation Network
文章图片

【语义分割】Fast-SCNN|【语义分割】Fast-SCNN -- Fast Semantic Segmentation Network
文章图片
PPM是PSPNet中的一个重要模块,可融合 different-region-based context information.
【语义分割】Fast-SCNN|【语义分割】Fast-SCNN -- Fast Semantic Segmentation Network
文章图片
Adding few layers after the feature fusion module boosts the accuracy
Pre-training on Auxiliary Tasks In our experiments we show that small networks do not get significant benefit from pre-training. Instead, aggressive data augmentation and more number of epochs provide similar results
Fast-SCNN在cityscapes上训练1000个epoch
Experiment 1、Evaluation on Cityscapes 【语义分割】Fast-SCNN|【语义分割】Fast-SCNN -- Fast Semantic Segmentation Network
文章图片
【语义分割】Fast-SCNN|【语义分割】Fast-SCNN -- Fast Semantic Segmentation Network
文章图片
2、Pre-training and Weakly Labeled Data 【语义分割】Fast-SCNN|【语义分割】Fast-SCNN -- Fast Semantic Segmentation Network
文章图片
3、Lower Input Resolution 【语义分割】Fast-SCNN|【语义分割】Fast-SCNN -- Fast Semantic Segmentation Network
文章图片
目前很多模型输入都为512 x 1024

    推荐阅读