【语义分割】Fast-SCNN|【语义分割】Fast-SCNN -- Fast Semantic Segmentation Network
paper:Fast-SCNN
github:code
文章目录
- Abstract
- Fast-SCNN
- Network Architecture
- Pre-training on Auxiliary Tasks
- Experiment
- 1、Evaluation on Cityscapes
- 2、Pre-training and Weakly Labeled Data
- 3、Lower Input Resolution
Abstract 【【语义分割】Fast-SCNN|【语义分割】Fast-SCNN -- Fast Semantic Segmentation Network】Fast-SCNN是一个实时的语义分割模型。其基于现有的
two-branch
方法(BiSeNet),引入了一个learning to downsample
模块,在cityscapes上得到68.0%
的miou。FastSCNN采用
depthwise separable convolutions
和inverse residual blocks
Fast-SCNN 实时语义分割模型设计要点:
a larger receptive field
is important to learn complex correlations among object classes (i.e. global context)spatial detail
in images is necessary to preserve object
boundariesbalance speed and accuracy
文章图片
文章图片
PPM
是PSPNet中的一个重要模块,可融合 different-region-based context information.文章图片
Adding few layers after the feature fusion module boosts the accuracy
Pre-training on Auxiliary Tasks In our experiments we show that
small networks
do not get significant benefit from pre-training
. Instead, aggressive data augmentation and more number of epochs
provide similar resultsFast-SCNN在cityscapes上训练
1000
个epochExperiment 1、Evaluation on Cityscapes
文章图片
文章图片
2、Pre-training and Weakly Labeled Data
文章图片
3、Lower Input Resolution
文章图片
目前很多模型输入都为512 x 1024
推荐阅读
- 宽容谁
- 我要做大厨
- 增长黑客的海盗法则
- 画画吗()
- 2019-02-13——今天谈梦想()
- 远去的风筝
- 三十年后的广场舞大爷
- 叙述作文
- 20190302|20190302 复盘翻盘
- 学无止境,人生还很长