6.|6. sharding-jdbc源码之group by结果合并(1)

阿飞Javaer,转载请注明原创出处,谢谢!
在5. sharding-jdbc源码之结果合并中已经分析了OrderByStreamResultSetMerger、LimitDecoratorResultSetMerger、IteratorStreamResultSetMerger,查看源码目录下ResultSetMerger的实现类,只剩下GroupByMemoryResultSetMerger和GroupByStreamResultSetMerger两个实现类的分析,接下来根据源码对两者的实现进行剖析;

6.|6. sharding-jdbc源码之group by结果合并(1)
文章图片
ResultSetMerge关系图.png
如何选择 GroupBy有两个ResultSetMerge的实现:GroupByMemoryResultSetMerger和GroupByStreamResultSetMerger,那么如何选择呢?在MergeEngine中有一段这样的代码:
private ResultSetMerger build() throws SQLException { // 如果有group by或者聚合类型(例如sum, avg等)的SQL条件,就会选择一个GroupBy***ResultSetMerger if (!selectStatement.getGroupByItems().isEmpty() || !selectStatement.getAggregationSelectItems().isEmpty()) { // isSameGroupByAndOrderByItems()源码紧随其后 if (selectStatement.isSameGroupByAndOrderByItems()) { return new GroupByStreamResultSetMerger(columnLabelIndexMap, resultSets, selectStatement); } else { return new GroupByMemoryResultSetMerger(columnLabelIndexMap, resultSets, selectStatement); } } if (!selectStatement.getOrderByItems().isEmpty()) { return new OrderByStreamResultSetMerger(resultSets, selectStatement.getOrderByItems()); } return new IteratorStreamResultSetMerger(resultSets); }// 如果只有group by条件,没有order by,那么isSameGroupByAndOrderByItems()为true,例如:`SELECT o.* FROM t_order o where o.user_id=? group by o.order_id`(因为这种sql会被改写为SELECT o.* , o.order_id AS GROUP_BY_DERIVED_0 FROM t_order_0 o where o.user_id=?group by o.order_idORDER BY GROUP_BY_DERIVED_0 ASC,即group by和order by完全相同) public boolean isSameGroupByAndOrderByItems() { return !getGroupByItems().isEmpty() && getGroupByItems().equals(getOrderByItems()); }

由上段源码分析可知,如果只有group by条件,那么选择GroupByStreamResultSetMerger;那么如果既有group by,又有order by,那么就会选择GroupByStreamResultSetMerger;
接下来分析GroupByStreamResultSetMerger中如何对结果进行group by聚合,假设数据源js_jdbc_0中实际表t_order_0和实际表t_order_1的数据如下:
order_id user_id status
1000 10 INIT
1002 10 INIT
1004 10 VALID
1006 10 NEW
1008 10 INIT
order_id user_id status
1001 10 NEW
1003 10 NEW
1005 10 VALID
1007 10 INIT
1009 10 INIT
GroupByStreamResultSetMerger 以执行SQLSELECT o.status, count(o.user_id) FROM t_order o where o.user_id=10 group by o.status为例,分析GroupByStreamResultSetMerger,其部分源码如下:
public final class GroupByStreamResultSetMerger extends OrderByStreamResultSetMerger { ... ... public GroupByStreamResultSetMerger( final Map labelAndIndexMap, final List resultSets, final SelectStatement selectStatement) throws SQLException { // GroupByStreamResultSetMerger的父类是OrderByStreamResultSetMerger,所以调用super()就是调用OrderByStreamResultSetMerger的构造方法 super(resultSets, selectStatement.getOrderByItems()); // 标签(列名)和位置索引的map关系,例如{order_id:1, status:3, user_id:2} this.labelAndIndexMap = labelAndIndexMap; // 执行的SQL语句 this.selectStatement = selectStatement; currentRow = new ArrayList<>(labelAndIndexMap.size()); // 如果优先级队列不为空,表示where条件中有group by,将队列中第一个元素的group值赋值给currentGroupByValues,即INIT(默认升序排列,所以INIT > NEW > VALID) currentGroupByValues = getOrderByValuesQueue().isEmpty() ? Collections.emptyList() : new GroupByValue(getCurrentResultSet(), selectStatement.getGroupByItems()).getGroupValues(); } ... }

【6.|6. sharding-jdbc源码之group by结果合并(1)】备注:OrderByStreamResultSetMerger在5. sharding-jdbc源码之结果合并这篇文章中已经分析,不再赘述;
next()方法核心源码如下:
@Override public boolean next() throws SQLException { currentRow.clear(); // 如果优先级队列为空,表示没有任何结果,那么返回false if (getOrderByValuesQueue().isEmpty()) { return false; } if (isFirstNext()) { super.next(); } // 集合的核心逻辑在这里 if (aggregateCurrentGroupByRowAndNext()) { currentGroupByValues = new GroupByValue(getCurrentResultSet(), selectStatement.getGroupByItems()).getGroupValues(); } return true; }

aggregateCurrentGroupByRowAndNext()实现如下:
private boolean aggregateCurrentGroupByRowAndNext() throws SQLException { boolean result = false; // selectStatement.getAggregationSelectItems()先得到select所有举行类型的项,例如select count(o.user_id) ***中聚合项是count(o.user_id), 然后转化成map,key就是聚合项即o.user_id,value就是集合unit实例即AccumulationAggregationUnit;即o.user_id的COUNT集合计算是通过AccumulationAggregationUnit实现的,下面有对AggregationUnitFactory的分析 Map aggregationUnitMap = Maps.toMap(selectStatement.getAggregationSelectItems(), new Function() {@Override public AggregationUnit apply(final AggregationSelectItem input) { return AggregationUnitFactory.create(input.getType()); } }); // 接下来准备聚合,如何group by的值相同,则进行聚合(因为SQL可能会在多个数据源以及多个实际表上执行) while (currentGroupByValues.equals(new GroupByValue(getCurrentResultSet(), selectStatement.getGroupByItems()).getGroupValues())) { // 调用aggregate()方法进行? aggregate(aggregationUnitMap); cacheCurrentRow(); // 调用next()方法,实际调用OrderByStreamResultSetMerger中的next()方法,currentResultSet会指向下一个元素; result = super.next(); // 如果还有值,那么继续遍历 if (!result) { break; } } setAggregationValueToCurrentRow(aggregationUnitMap); return result; }

AggregationUnitFactory 源码如下:
public final class AggregationUnitFactory {/** * Create aggregation unit instance. * 根据这段代码可知,select中MAX和MIN这种聚合查询需要使用ComparableAggregationUnit,SUM和COUNT需要使用AccumulationAggregationUnit,AVG需要使用AverageAggregationUnit;(目前只支持这些聚合操作), */ public static AggregationUnit create(final AggregationType type) { switch (type) { case MAX: return new ComparableAggregationUnit(false); case MIN: return new ComparableAggregationUnit(true); case SUM: case COUNT: return new AccumulationAggregationUnit(); case AVG: return new AverageAggregationUnit(); default: throw new UnsupportedOperationException(type.name()); } } }

aggregate()源码如下:
private void aggregate(final Map aggregationUnitMap) throws SQLException { for (Entry entry : aggregationUnitMap.entrySet()) { List> values = new ArrayList<>(2); if (entry.getKey().getDerivedAggregationSelectItems().isEmpty()) { values.add(getAggregationValue(entry.getKey())); } else { for (AggregationSelectItem each : entry.getKey().getDerivedAggregationSelectItems()) { values.add(getAggregationValue(each)); } } // aggregate()的核心就是调用AggregationUnit具体实现中的merge()方法,即调用AccumulationAggregationUnit.merge()方法(后面会对AggregationUnit的各个实现进行分析) entry.getValue().merge(values); } }

执行过程图解 这一块的代码逻辑稍微有点复杂,下面通过示意图分解执行过程,让sharding-jdbc执行group by整个过程更加清晰:
step1. SQL执行
首先在两个实际表t_order_0t_order_1中分别执行SQL:SELECT o.status, count(o.user_id) FROM t_order o where o.user_id=10 group by o.statust_order_0t_order_1分别得到如下的结果:
status count(o.user_id)
INIT 3
NEW 1
VALID 1
status count(o.user_id)
INIT 2
NEW 2
VALID 1
step2. 执行super(***)
即在GroupByStreamResultSetMerger中调用OrderByStreamResultSetMerger的构造方法super(resultSets, selectStatement.getOrderByItems()); ,从而得到优先级队列,如下图所示的第一张图,优先级中包含两个元素[(INIT, 3), (INIT 2)]:
6.|6. sharding-jdbc源码之group by结果合并(1)
文章图片
powered by afei.png
  1. 先聚合计算(INIT,3)和(INIT,2),由于NEW和INIT不相等,进行下一轮聚合计算;
  2. 再聚合计算(NEW,1)和(NEW,2),由于VALID和NEW不相等,进行下一轮聚合计算;
  3. 再聚合计算(VALID,1)和(VALID,1),两者的next()为false,聚合计算完成;
step3. aggregationUnitMap
通过转换得到aggregationUnitMap,key就是count(user_id),value就是COUNT聚合计算的AggregationUnit实现,即AccumulationAggregationUnit;
由于select语句中只有COUNT(o.user_id涉及到聚合运行,所以这个map的size为1,且key是count(user_id);如果SQL是SELECT o.status, count(o.user_id), max(order_id) FROM t_order o where o.user_id=? group by o.status,那么aggregationUnitMap的size为2,且第一个entry的key是count(user_id),value是AccumulationAggregationUnit;第二个entry的key是max(order_id),value是ComparableAggregationUnit;
step4. 循环遍历并merge
核心代码如下,即将(INIT, 3)和(INIT, 2)通过调用AccumulationAggregationUnit中的merge方法,从而得到(INIT, 5)。同样的原因调用AccumulationAggregationUnit中的merge方法merge(NEW, 1)和(NEW, 2),从而得到(NEW, 3);merge(VALID, 1)和(VALID, 1),从而得到(VALID, 2)。所以,最终的结果就是[(INIT, 5), (NEW, 3), (VALID, 2)]
while (currentGroupByValues.equals(new GroupByValue(getCurrentResultSet(), selectStatement.getGroupByItems()).getGroupValues())) { aggregate(aggregationUnitMap); cacheCurrentRow(); result = super.next(); if (!result) { break; } }

AggregationUnit AggregationUnit即聚合计算接口,总计有三个实现类AccumulationAggregationUnit,ComparableAggregationUnit和AverageAggregationUnit,接下来分别对其简单介绍;
AccumulationAggregationUnit
实现源码如下,SUN和COUNT两个聚合计算都是用这个AggregationUnit实现,核心实现就是累加:
@Override public void merge(final List> values) { if (null == values || null == values.get(0)) { return; } if (null == result) { result = new BigDecimal("0"); } // 核心实现代码:累加 result = result.add(new BigDecimal(values.get(0).toString())); log.trace("Accumulation result: {}", result.toString()); }

ComparableAggregationUnit
实现源码如下,MAX和MIN两个聚合计算都是用这个AggregationUnit实现,核心实现就是比较:
@Override public void merge(final List> values) { if (null == values || null == values.get(0)) { return; } if (null == result) { result = values.get(0); log.trace("Comparable result: {}", result); return; } // 新的值与旧的值比较大小 int comparedValue = https://www.it610.com/article/((Comparable) values.get(0)).compareTo(result); // 升序和降序比较方式不同(max聚合计算时asc为false,min聚合计算时asc为true),min聚合计算时找一个更小的值(asc && comparedValue < 0),max聚合计算时找一个更大的值(!asc && comparedValue> 0) if (asc && comparedValue < 0 || !asc && comparedValue > 0) { result = values.get(0); log.trace("Comparable result: {}", result); } }

AverageAggregationUnit
实现源码如下,AVG聚合计算就是用的这个AggregationUnit实现,核心实现是将AVG转化后的SUM/COUNT,累加得到总SUM和总COUNT相除就是最终的AVG结果;
@Override public void merge(final List> values) { if (null == values || null == values.get(0) || null == values.get(1)) { return; } if (null == count) { count = new BigDecimal("0"); } if (null == sum) { sum = new BigDecimal("0"); } // COUNT累加 count = count.add(new BigDecimal(values.get(0).toString())); // SUM累加 sum = sum.add(new BigDecimal(values.get(1).toString())); log.trace("AVG result COUNT: {} SUM: {}", count, sum); }

    推荐阅读