实验描述:
【数据挖掘|Java实现朴素贝叶斯分类器】对指定数据集进行分类问题的分析,选择适当的分类算法,编写程序实现,提交程序和结果报告
数据集: balance-scale.data(见附件一) ,已有数据集构建贝叶斯分类器。
数据包括四个属性:五个属性值 第一个属性值表示样本的类别号,其他四个属性为四个不同的特征值。
实验环境和编程语言:
本实验使用的编程语言为:Java
编程环境为:Intellij idea
构建分类器的算法为:朴素贝叶斯算法
训练的样本个数为:625个
样本示例:R,1,1,1,2(表示属于R类,四各属性值为1 1 1 2)
训练样本和测试样本见附件一。
工程和测试数据下载地址:
http://download.csdn.net/detail/qq_24369113/9711643
文章图片
实验结果分析:
根据程序运行的结果如图1-1所示,使用训练的样本对分类器进行检测,分类得到295个R类(实际288个),330个L类(实际288个),0个B类(实际49个),综合分类正确率为92.16%。可以认为分类器有较高的正确率,但是对于类B的分类还是有一定的误差,具体原因会在思考与改进中说明。
文章图片
思考与改进:
思考点:
本次实验编程利用朴素贝叶斯算法构建的分类器,虽然整体情况是拥有较高的分类正确率(92.16%),但是对训练样本再检测时没有发现一个B类样本,出现的较大的偏差,分析原因如下:
1.B类样本点总数很少,以至于P(yB)就远远小于P(yR)和P(yL),所以对于后验概率公式,P(yB|x)必然比P(yL|x)和P(yR|x)要小,因此导致最后样本难以分到B类。
2.观察训练样本集可以发现,B类的样本点和L类以及R类并没有很大区别,其不具备很强的统计可分性,所以对于依赖于统计概率的贝叶斯方法无法体现出其优势,所以导致了最终没有样本被分到B类中。
改进点:
本算法在实现贝叶斯分类的时候,每一次都进行了遍历样本集来求出
P(a1|y1)、P(a2|y1)……P(an|yn),所以导致算法的整体时间复杂度较高,在面临较大的数据集时可能就会出现问题,因此可以考虑实现将已经计算过的
P(ax|yx)存储到变量或者数组中,在下一次计算的时候可以直接调用,从而可以避免再一次的遍历训练集来计算概率,实现时间复杂度的降低。
编程实现:
package com.company;
/********************************************************************************
*
*
* 数据挖掘实验,分类实验
* 朴素贝叶斯分类
*
*训练样本示例格式:(R,1,5,5,4)
*/import java.io.File;
import java.util.Scanner;
import java.util.Vector;
public class Bayes {
static Vector indata = https://www.it610.com/article/new Vector<>();
//读入数据
static Vector catagory_R = new Vector<>();
//存储类别R的所有数据
static Vector catagory_L = new Vector<>();
//存储类别L的所有数据
static Vector catagory_B = new Vector<>();
//存储类别B的所有数据public static boolean loadData(String url) {//加载测试的数据文件
try {
Scanner in = new Scanner(new File(url));
//读入文件
while (in.hasNextLine()) {
String str = in.nextLine();
//将文件的每一行存到str的临时变量中
indata.add(str);
//将每一个样本点的数据追加到Vector 中
}
return true;
} catch (Exception e) { //如果出错返回false
return false;
}
}public static void pretreatment(Vector indata) {//数据预处理,将原始数据中的每一个属性值提取出来存放到Vectordata中
int i = 0;
String t;
while (i < indata.size()) {//取出indata中的每一行值
int[] tem = new int[4];
t = indata.get(i);
String[] sourceStrArray = t.split(",", 5);
//使用字符串分割函数提取出各属性值
switch (sourceStrArray[0]) {
case "R": {
for (int j = 1;
j < 5;
j++) {
tem[j - 1] = Integer.parseInt(sourceStrArray[j]);
}
catagory_R.add(tem);
break;
}
case "L": {
for (int j = 1;
j < 5;
j++) {
tem[j - 1] = Integer.parseInt(sourceStrArray[j]);
}
catagory_L.add(tem);
break;
}
case "B": {
for (int j = 1;
j < 5;
j++) {
tem[j - 1] = Integer.parseInt(sourceStrArray[j]);
}
catagory_B.add(tem);
break;
}
}
i++;
}}public static double bayes(int[] x, Vector catagory) {
double[] ai_y = new double[4];
int[] sum_ai = new int[4];
for (int i = 0;
i < 4;
i++) {for (int j = 0;
j < catagory.size();
j++) {
if (x[i] == catagory.get(j)[i])
sum_ai[i]++;
}
}
for (int i = 0;
i < 4;
i++) {
ai_y[i] = (double) sum_ai[i] / (double) catagory.size();
}
return ai_y[0] * ai_y[1] * ai_y[2] * ai_y[3];
}public static void main(String[] args) {loadData("balance-scale.data");
pretreatment(indata);
double p_yR = (double) catagory_R.size() / (double) (indata.size());
//表示概率p(R)
double p_yB = (double) catagory_B.size() / (double) (indata.size());
//表示概率p(B)
double p_yL = (double) catagory_L.size() / (double) (indata.size());
//表示概率p(L)int[] x = new int[4];
double x_in_R, x_in_L, x_in_B;
int sumR=0, sumL=0, sumB=0;
double correct=0;
System.out.println("请输入样本x格式如下:\n 1 1 1 1\n");
int r = 0;
while (r < indata.size()) {for (int i = 0;
i < 4;
i++)
//读取数字放入数组的第i个元素
x[i] = Integer.parseInt(indata.get(r).split(",", 5)[i + 1]);
x_in_B = bayes(x, catagory_B) * p_yB;
x_in_L = bayes(x, catagory_L) * p_yL;
x_in_R = bayes(x, catagory_R) * p_yR;
if (x_in_B == Math.max(Math.max(x_in_B, x_in_L), x_in_R)) {
System.out.println("输入的第"+r+"样本属于类别:B");
sumB++;
if(indata.get(r).split(",",5)[0].equals("B"))
correct++;
} else if (x_in_L == Math.max(Math.max(x_in_B, x_in_L), x_in_R)) {
System.out.println("输入的第"+r+"样本属于类别:L");
sumL++;
if(indata.get(r).split(",",5)[0].equals("L"))
correct++;
} else if (x_in_R == Math.max(Math.max(x_in_B, x_in_L), x_in_R)) {
System.out.println("输入的第"+r+"样本属于类别:R");
sumR++;
if(indata.get(r).split(",",5)[0].equals("R"))
correct++;
}r++;
}System.out.println("使用训练样本进行分类器检验得到结果统计如下:");
System.out.println("R类有:"+sumR+"实际有R类样本"+catagory_R.size()+"个");
System.out.println("L类有:"+sumL+"实际有L类样本"+catagory_L.size()+"个");
System.out.println("B类有:"+sumB+"实际有B类样本"+catagory_B.size()+"个");
System.out.println("分类的正确率为"+correct*1.0/indata.size()*100+"%");
}
}
(附件一)训练样本和测试样本集:
B,1,1,1,1
R,1,1,1,2
R,1,1,1,3
R,1,1,1,4
R,1,1,1,5
R,1,1,2,1
R,1,1,2,2
R,1,1,2,3
R,1,1,2,4
R,1,1,2,5
R,1,1,3,1
R,1,1,3,2
R,1,1,3,3
R,1,1,3,4
R,1,1,3,5
R,1,1,4,1
R,1,1,4,2
R,1,1,4,3
R,1,1,4,4
R,1,1,4,5
R,1,1,5,1
R,1,1,5,2
R,1,1,5,3
R,1,1,5,4
R,1,1,5,5
L,1,2,1,1
B,1,2,1,2
R,1,2,1,3
R,1,2,1,4
R,1,2,1,5
B,1,2,2,1
R,1,2,2,2
R,1,2,2,3
R,1,2,2,4
R,1,2,2,5
R,1,2,3,1
R,1,2,3,2
R,1,2,3,3
R,1,2,3,4
R,1,2,3,5
R,1,2,4,1
R,1,2,4,2
R,1,2,4,3
R,1,2,4,4
R,1,2,4,5
R,1,2,5,1
R,1,2,5,2
R,1,2,5,3
R,1,2,5,4
R,1,2,5,5
L,1,3,1,1
L,1,3,1,2
B,1,3,1,3
R,1,3,1,4
R,1,3,1,5
L,1,3,2,1
R,1,3,2,2
R,1,3,2,3
R,1,3,2,4
R,1,3,2,5
B,1,3,3,1
R,1,3,3,2
R,1,3,3,3
R,1,3,3,4
R,1,3,3,5
R,1,3,4,1
R,1,3,4,2
R,1,3,4,3
R,1,3,4,4
R,1,3,4,5
R,1,3,5,1
R,1,3,5,2
R,1,3,5,3
R,1,3,5,4
R,1,3,5,5
L,1,4,1,1
L,1,4,1,2
L,1,4,1,3
B,1,4,1,4
R,1,4,1,5
L,1,4,2,1
B,1,4,2,2
R,1,4,2,3
R,1,4,2,4
R,1,4,2,5
L,1,4,3,1
R,1,4,3,2
R,1,4,3,3
R,1,4,3,4
R,1,4,3,5
B,1,4,4,1
R,1,4,4,2
R,1,4,4,3
R,1,4,4,4
R,1,4,4,5
R,1,4,5,1
R,1,4,5,2
R,1,4,5,3
R,1,4,5,4
R,1,4,5,5
L,1,5,1,1
L,1,5,1,2
L,1,5,1,3
L,1,5,1,4
B,1,5,1,5
L,1,5,2,1
L,1,5,2,2
R,1,5,2,3
R,1,5,2,4
R,1,5,2,5
L,1,5,3,1
R,1,5,3,2
R,1,5,3,3
R,1,5,3,4
R,1,5,3,5
L,1,5,4,1
R,1,5,4,2
R,1,5,4,3
R,1,5,4,4
R,1,5,4,5
B,1,5,5,1
R,1,5,5,2
R,1,5,5,3
R,1,5,5,4
R,1,5,5,5
L,2,1,1,1
B,2,1,1,2
R,2,1,1,3
R,2,1,1,4
R,2,1,1,5
B,2,1,2,1
R,2,1,2,2
R,2,1,2,3
R,2,1,2,4
R,2,1,2,5
R,2,1,3,1
R,2,1,3,2
R,2,1,3,3
R,2,1,3,4
R,2,1,3,5
R,2,1,4,1
R,2,1,4,2
R,2,1,4,3
R,2,1,4,4
R,2,1,4,5
R,2,1,5,1
R,2,1,5,2
R,2,1,5,3
R,2,1,5,4
R,2,1,5,5
L,2,2,1,1
L,2,2,1,2
L,2,2,1,3
B,2,2,1,4
R,2,2,1,5
L,2,2,2,1
B,2,2,2,2
R,2,2,2,3
R,2,2,2,4
R,2,2,2,5
L,2,2,3,1
R,2,2,3,2
R,2,2,3,3
R,2,2,3,4
R,2,2,3,5
B,2,2,4,1
R,2,2,4,2
R,2,2,4,3
R,2,2,4,4
R,2,2,4,5
R,2,2,5,1
R,2,2,5,2
R,2,2,5,3
R,2,2,5,4
R,2,2,5,5
L,2,3,1,1
L,2,3,1,2
L,2,3,1,3
L,2,3,1,4
L,2,3,1,5
L,2,3,2,1
L,2,3,2,2
B,2,3,2,3
R,2,3,2,4
R,2,3,2,5
L,2,3,3,1
B,2,3,3,2
R,2,3,3,3
R,2,3,3,4
R,2,3,3,5
L,2,3,4,1
R,2,3,4,2
R,2,3,4,3
R,2,3,4,4
R,2,3,4,5
L,2,3,5,1
R,2,3,5,2
R,2,3,5,3
R,2,3,5,4
R,2,3,5,5
L,2,4,1,1
L,2,4,1,2
L,2,4,1,3
L,2,4,1,4
L,2,4,1,5
L,2,4,2,1
L,2,4,2,2
L,2,4,2,3
B,2,4,2,4
R,2,4,2,5
L,2,4,3,1
L,2,4,3,2
R,2,4,3,3
R,2,4,3,4
R,2,4,3,5
L,2,4,4,1
B,2,4,4,2
R,2,4,4,3
R,2,4,4,4
R,2,4,4,5
L,2,4,5,1
R,2,4,5,2
R,2,4,5,3
R,2,4,5,4
R,2,4,5,5
L,2,5,1,1
L,2,5,1,2
L,2,5,1,3
L,2,5,1,4
L,2,5,1,5
L,2,5,2,1
L,2,5,2,2
L,2,5,2,3
L,2,5,2,4
B,2,5,2,5
L,2,5,3,1
L,2,5,3,2
L,2,5,3,3
R,2,5,3,4
R,2,5,3,5
L,2,5,4,1
L,2,5,4,2
R,2,5,4,3
R,2,5,4,4
R,2,5,4,5
L,2,5,5,1
B,2,5,5,2
R,2,5,5,3
R,2,5,5,4
R,2,5,5,5
L,3,1,1,1
L,3,1,1,2
B,3,1,1,3
R,3,1,1,4
R,3,1,1,5
L,3,1,2,1
R,3,1,2,2
R,3,1,2,3
R,3,1,2,4
R,3,1,2,5
B,3,1,3,1
R,3,1,3,2
R,3,1,3,3
R,3,1,3,4
R,3,1,3,5
R,3,1,4,1
R,3,1,4,2
R,3,1,4,3
R,3,1,4,4
R,3,1,4,5
R,3,1,5,1
R,3,1,5,2
R,3,1,5,3
R,3,1,5,4
R,3,1,5,5
L,3,2,1,1
L,3,2,1,2
L,3,2,1,3
L,3,2,1,4
L,3,2,1,5
L,3,2,2,1
L,3,2,2,2
B,3,2,2,3
R,3,2,2,4
R,3,2,2,5
L,3,2,3,1
B,3,2,3,2
R,3,2,3,3
R,3,2,3,4
R,3,2,3,5
L,3,2,4,1
R,3,2,4,2
R,3,2,4,3
R,3,2,4,4
R,3,2,4,5
L,3,2,5,1
R,3,2,5,2
R,3,2,5,3
R,3,2,5,4
R,3,2,5,5
L,3,3,1,1
L,3,3,1,2
L,3,3,1,3
L,3,3,1,4
L,3,3,1,5
L,3,3,2,1
L,3,3,2,2
L,3,3,2,3
L,3,3,2,4
R,3,3,2,5
L,3,3,3,1
L,3,3,3,2
B,3,3,3,3
R,3,3,3,4
R,3,3,3,5
L,3,3,4,1
L,3,3,4,2
R,3,3,4,3
R,3,3,4,4
R,3,3,4,5
L,3,3,5,1
R,3,3,5,2
R,3,3,5,3
R,3,3,5,4
R,3,3,5,5
L,3,4,1,1
L,3,4,1,2
L,3,4,1,3
L,3,4,1,4
L,3,4,1,5
L,3,4,2,1
L,3,4,2,2
L,3,4,2,3
L,3,4,2,4
L,3,4,2,5
L,3,4,3,1
L,3,4,3,2
L,3,4,3,3
B,3,4,3,4
R,3,4,3,5
L,3,4,4,1
L,3,4,4,2
B,3,4,4,3
R,3,4,4,4
R,3,4,4,5
L,3,4,5,1
L,3,4,5,2
R,3,4,5,3
R,3,4,5,4
R,3,4,5,5
L,3,5,1,1
L,3,5,1,2
L,3,5,1,3
L,3,5,1,4
L,3,5,1,5
L,3,5,2,1
L,3,5,2,2
L,3,5,2,3
L,3,5,2,4
L,3,5,2,5
L,3,5,3,1
L,3,5,3,2
L,3,5,3,3
L,3,5,3,4
B,3,5,3,5
L,3,5,4,1
L,3,5,4,2
L,3,5,4,3
R,3,5,4,4
R,3,5,4,5
L,3,5,5,1
L,3,5,5,2
B,3,5,5,3
R,3,5,5,4
R,3,5,5,5
L,4,1,1,1
L,4,1,1,2
L,4,1,1,3
B,4,1,1,4
R,4,1,1,5
L,4,1,2,1
B,4,1,2,2
R,4,1,2,3
R,4,1,2,4
R,4,1,2,5
L,4,1,3,1
R,4,1,3,2
R,4,1,3,3
R,4,1,3,4
R,4,1,3,5
B,4,1,4,1
R,4,1,4,2
R,4,1,4,3
R,4,1,4,4
R,4,1,4,5
R,4,1,5,1
R,4,1,5,2
R,4,1,5,3
R,4,1,5,4
R,4,1,5,5
L,4,2,1,1
L,4,2,1,2
L,4,2,1,3
L,4,2,1,4
L,4,2,1,5
L,4,2,2,1
L,4,2,2,2
L,4,2,2,3
B,4,2,2,4
R,4,2,2,5
L,4,2,3,1
L,4,2,3,2
R,4,2,3,3
R,4,2,3,4
R,4,2,3,5
L,4,2,4,1
B,4,2,4,2
R,4,2,4,3
R,4,2,4,4
R,4,2,4,5
L,4,2,5,1
R,4,2,5,2
R,4,2,5,3
R,4,2,5,4
R,4,2,5,5
L,4,3,1,1
L,4,3,1,2
L,4,3,1,3
L,4,3,1,4
L,4,3,1,5
L,4,3,2,1
L,4,3,2,2
L,4,3,2,3
L,4,3,2,4
L,4,3,2,5
L,4,3,3,1
L,4,3,3,2
L,4,3,3,3
B,4,3,3,4
R,4,3,3,5
L,4,3,4,1
L,4,3,4,2
B,4,3,4,3
R,4,3,4,4
R,4,3,4,5
L,4,3,5,1
L,4,3,5,2
R,4,3,5,3
R,4,3,5,4
R,4,3,5,5
L,4,4,1,1
L,4,4,1,2
L,4,4,1,3
L,4,4,1,4
L,4,4,1,5
L,4,4,2,1
L,4,4,2,2
L,4,4,2,3
L,4,4,2,4
L,4,4,2,5
L,4,4,3,1
L,4,4,3,2
L,4,4,3,3
L,4,4,3,4
L,4,4,3,5
L,4,4,4,1
L,4,4,4,2
L,4,4,4,3
B,4,4,4,4
R,4,4,4,5
L,4,4,5,1
L,4,4,5,2
L,4,4,5,3
R,4,4,5,4
R,4,4,5,5
L,4,5,1,1
L,4,5,1,2
L,4,5,1,3
L,4,5,1,4
L,4,5,1,5
L,4,5,2,1
L,4,5,2,2
L,4,5,2,3
L,4,5,2,4
L,4,5,2,5
L,4,5,3,1
L,4,5,3,2
L,4,5,3,3
L,4,5,3,4
L,4,5,3,5
L,4,5,4,1
L,4,5,4,2
L,4,5,4,3
L,4,5,4,4
B,4,5,4,5
L,4,5,5,1
L,4,5,5,2
L,4,5,5,3
B,4,5,5,4
R,4,5,5,5
L,5,1,1,1
L,5,1,1,2
L,5,1,1,3
L,5,1,1,4
B,5,1,1,5
L,5,1,2,1
L,5,1,2,2
R,5,1,2,3
R,5,1,2,4
R,5,1,2,5
L,5,1,3,1
R,5,1,3,2
R,5,1,3,3
R,5,1,3,4
R,5,1,3,5
L,5,1,4,1
R,5,1,4,2
R,5,1,4,3
R,5,1,4,4
R,5,1,4,5
B,5,1,5,1
R,5,1,5,2
R,5,1,5,3
R,5,1,5,4
R,5,1,5,5
L,5,2,1,1
L,5,2,1,2
L,5,2,1,3
L,5,2,1,4
L,5,2,1,5
L,5,2,2,1
L,5,2,2,2
L,5,2,2,3
L,5,2,2,4
B,5,2,2,5
L,5,2,3,1
L,5,2,3,2
L,5,2,3,3
R,5,2,3,4
R,5,2,3,5
L,5,2,4,1
L,5,2,4,2
R,5,2,4,3
R,5,2,4,4
R,5,2,4,5
L,5,2,5,1
B,5,2,5,2
R,5,2,5,3
R,5,2,5,4
R,5,2,5,5
L,5,3,1,1
L,5,3,1,2
L,5,3,1,3
L,5,3,1,4
L,5,3,1,5
L,5,3,2,1
L,5,3,2,2
L,5,3,2,3
L,5,3,2,4
L,5,3,2,5
L,5,3,3,1
L,5,3,3,2
L,5,3,3,3
L,5,3,3,4
B,5,3,3,5
L,5,3,4,1
L,5,3,4,2
L,5,3,4,3
R,5,3,4,4
R,5,3,4,5
L,5,3,5,1
L,5,3,5,2
B,5,3,5,3
R,5,3,5,4
R,5,3,5,5
L,5,4,1,1
L,5,4,1,2
L,5,4,1,3
L,5,4,1,4
L,5,4,1,5
L,5,4,2,1
L,5,4,2,2
L,5,4,2,3
L,5,4,2,4
L,5,4,2,5
L,5,4,3,1
L,5,4,3,2
L,5,4,3,3
L,5,4,3,4
L,5,4,3,5
L,5,4,4,1
L,5,4,4,2
L,5,4,4,3
L,5,4,4,4
B,5,4,4,5
L,5,4,5,1
L,5,4,5,2
L,5,4,5,3
B,5,4,5,4
R,5,4,5,5
L,5,5,1,1
L,5,5,1,2
L,5,5,1,3
L,5,5,1,4
L,5,5,1,5
L,5,5,2,1
L,5,5,2,2
L,5,5,2,3
L,5,5,2,4
L,5,5,2,5
L,5,5,3,1
L,5,5,3,2
L,5,5,3,3
L,5,5,3,4
L,5,5,3,5
L,5,5,4,1
L,5,5,4,2
L,5,5,4,3
L,5,5,4,4
L,5,5,4,5
L,5,5,5,1
L,5,5,5,2
L,5,5,5,3
L,5,5,5,4
B,5,5,5,5
推荐阅读
- R语言从入门到机器学习|R语言rename重命名dataframe的列名实战:rename重命名dataframe的列名(写错的列名不会被重命名)
- Pyecharts|Pyecharts 猎聘招聘数据可视化
- Python|Python--随机森林模型
- 数据挖掘|【数据挖掘】二手车交易价格预测(五)建模调参
- python|深度盘点(一文详解数据分析中100个常用指标和术语)
- python|【python】微信朋友圈数据分析及可视化(爬虫+数据挖掘)
- python|requests库请求获取不到数据怎么办(不妨试试看这种妙法)
- 还不了解数据库(Smartbi一文带你入门数据库!)
- 还不会做销售分析(掌握这3个思路,让你秒变分析高手)
- 手把手教你实现地图可视化分析