模板匹配是一项在一幅图像中寻找与另一幅模板图像最相似部分的技术。
#include
#include
#include
using namespace std;
using namespace cv;
#define WINDOW_NAME1 "原始图"
#define WINDOW_NAME2 "效果窗口"Mat g_srcImage, g_templateImage, g_resultImage;
int g_nMatchMethod;
int g_nMaxTrackbarNum = 5;
void on_Matching(int, void*);
int main() {
//载入原图像和模板块
g_srcImage = imread("1.jpg", 1);
g_templateImage = imread("2.jpg", 1);
imshow("template", g_templateImage);
//创建窗口
namedWindow(WINDOW_NAME1, CV_WINDOW_AUTOSIZE);
namedWindow(WINDOW_NAME2, CV_WINDOW_AUTOSIZE);
//创建滑动条并进行一次初始化
createTrackbar("方法", WINDOW_NAME1, &g_nMatchMethod, g_nMaxTrackbarNum, on_Matching);
on_Matching(0, 0);
waitKey(0);
return 0;
}void on_Matching(int, void*) {
//给局部变量初始化
Mat srcImage;
g_srcImage.copyTo(srcImage);
//初始化用于结果输出的矩阵
int resultImage_rows = g_srcImage.rows - g_templateImage.rows + 1;
int resultImage_cols = g_srcImage.cols - g_templateImage.cols + 1;
g_resultImage.create(resultImage_rows, resultImage_cols, CV_32FC1);
//进行匹配和标准化
matchTemplate(g_srcImage, g_templateImage, g_resultImage, g_nMatchMethod);
normalize(g_resultImage, g_resultImage, 0, 1, NORM_MINMAX, -1, Mat());
//通过函数minMaxLoc定位最匹配的位置
double minValue, maxValue;
Point minLocation, maxLocation;
Point matchLocation;
minMaxLoc(g_resultImage, &minValue, &maxValue, &minLocation, &maxLocation, Mat());
//对于方法SQDIFF和SQDIFF_NORMED越小的数值有着更高的匹配效果,而其余的方法,数值越大匹配效果越好
if (g_nMatchMethod == TM_SQDIFF || g_nMatchMethod == TM_SQDIFF_NORMED)
matchLocation = minLocation;
else
matchLocation = maxLocation;
//绘制出矩形,并显示最终结果
rectangle(srcImage, matchLocation, Point(matchLocation.x + g_templateImage.cols, matchLocation.y + g_templateImage.rows), Scalar(0, 0, 255), 2, 8, 0);
rectangle(g_resultImage, matchLocation, Point(matchLocation.x + g_templateImage.cols, matchLocation.y + g_templateImage.rows), Scalar(0, 0, 255), 2, 8, 0);
imshow(WINDOW_NAME1, srcImage);
imshow(WINDOW_NAME2, g_resultImage);
}
文章图片
文章图片
【OpenCV3之——模板匹配matchTemplate()】
文章图片
文章图片
文章图片
文章图片