#抬抬小手学Python# 内置 random 模块【附源码】

Python 内置模块之 random random 库是 Python 中生成随机数的标准库,包含的函数清单如下:

  • 基本随机函数:seedrandomgetstatesetstate
  • 扩展随机函数:randintgetrandbitsrandrangechoiceshufflesample
  • 分布随机函数:uniformtriangularbetavariateexpovariategammavariategausslognormvariatenormalvariatevonmisesvariateparetovariateweibullvariate
    发现单词 variate 出现频率比较高,该但是是变量的意思。
基本随机函数 seed 与 random 函数
seed 函数初始化一个随机种子,默认是当前系统时间。
random 函数 生成一个 [0.0,1.0) 之间的随机小数 。
具体代码如下:
import randomrandom.seed(10)x = random.random() print(x)

其中需要说明的是 random.seed 函数, 通过 seed 函数 可以每次生成相同的随机数,例如下述代码:
import randomrandom.seed(10) x = random.random() print(x)random.seed(10) y = random.random() print(y)

在不同的代码上获取到的值是不同的,但是 x 与 y 是相同的。
0.5714025946899135 0.5714025946899135

12.1.2 getstate() 和 setstate(state)
getstate 函数用来记录随机数生成器的状态,setstate 函数用来将生成器恢复到上次记录的状态。
# 记录生成器的状态 state_tuple = random.getstate() for i in range(4): print(random.random()) print("*"*10) # 传入参数后恢复之前状态 random.setstate(state_tuple) for j in range(4): print(random.random())

输出的随机数两次一致。
0.10043296140791758 0.6183668665504062 0.6964328590693109 0.6702494141830372 ********** 0.10043296140791758 0.6183668665504062 0.6964328590693109 0.6702494141830372

扩展随机函数 random 扩展随机函数有如下几个:
randint`、`getrandbits`、`randrange`、`choice`、`shuffle`、`sample

randint 和 randrange
randint 生成一个 [x,y] 区间之内的整数。
randrange 生成一个 [m,n) 区间之内以 k 为步长的随机整数。
测试代码如下:
x = random.randint(1,10) print(x)y = random.randrange(1,10,2) print(y)

这两个函数比较简单,randint 函数原型如下:
random.randint(start,stop)

【#抬抬小手学Python# 内置 random 模块【附源码】】参数 start 表示最小值,参数 stop 表示最大值,两头都是闭区间,也就是 startstop 都能被获取到。
randrange 函数原型如下:
random.randrange(start,stop,step)

如果函数调用时只有一个参数,默认是从 0 到该参数值,该函数与 randint 区别在于,函数是左闭右开,最后一个参数是步长。
查阅效果,可以复制下述代码运行:
for i in range(3): print("*"*20) print(random.randrange(10)) print(random.randrange(5,10)) print(random.randrange(5,100,5))

getrandbits(k) 和 choice(seq)
getrandbits 生成一个 k 比特长的随机整数,实际输出的是 k 位二进制数转换成的十进制数。
choice 从序列中随机选择一个元素。
x =random.getrandbits(5) print(x) # 生成的长度是 00000-11111

getrandbits(k) 函数可以简单描述如下:输出一个 $\[0,2^k-1\]$ 范围内一个随机整数,k 表示的是 2 进制的位数。
choice 就比较简单了,从列表中返回一个随机元素。
import randommy_list = ["a", "b", "c"]print(random.choice(my_list))

shuffle(seq) 和 sample(pop,k)
shuffle 函数用于将序列中的元素随机排序,并且原序列被修改。
sample 函数用于从序列或者集合中随机选择 k 个选择,原序列不变。
my_list = [1,2,3,4,5,6,7,8,9] random.shuffle(my_list)print(my_list)

shuffle 函数只能用于可变序列,不可变序列(如元组)会出现错误。
my_list = ["梦想", "橡皮擦", 1, 2, [3, 4]] print(my_list) ls = random.sample(my_list, 4) print(ls)

分布随机函数 该部分涉及的比较多,重点展示重要和常见的一些函数。
uniform(a,b) 、betavariate 和 triangular 函数
uniform 生成一个 [a,b] 之间的随机小数,采用等概率分布。
betavariate 生成一个 [0,1] 之间的随机小数,采用 beta 分布。
triangular 生成一个 [low,high] 之间的随机小数,采用三角分布。
在使用 uniform 时候需要注意,如果 a
for i in range(3): print(random.uniform(4, 1))

其它分布随机函数
以下都是生成随机数的方法,只是底层核心算法不同。
、、、、、、、。
  1. expovariate:生成一个 (0,∞) 之间的随机整数,指数分布;
  2. gammavariate:采用 gamma 分布;
  3. gauss:采用高斯(正太)分布;
  4. lognormvariate:对数正太分布;
  5. normalvariate:正太分布;
  6. vonmisesvariate:冯米赛斯分布;
  7. paretovariate:帕累托分布;
  8. weibullvariate:韦伯分布。
这篇博客的总结 本篇博客学习了 Python 中随机数相关的知识点,希望对你有所帮助。

    推荐阅读