技术分享 | 在GreatDB分布式部署模式中使用Chaos Mesh做混沌测试

  • GreatSQL社区原创内容未经授权不得随意使用,转载请联系小编并注明来源。
1. 需求背景与万里安全数据库软件GreatDB分布式部署模式介绍 1.1 需求背景 混沌测试是检测分布式系统不确定性、建立系统弹性信心的一种非常好的方式,因此我们采用开源工具Chaos Mesh来做GreatDB分布式集群的混沌测试。
1.2 万里安全数据库软件GreatDB分布式部署模式介绍 万里安全数据库软件GreatDB 是一款关系型数据库软件,同时支持集中式和分布式的部署方式,本文涉及的是分布式部署方式。
分布式部署模式采用shared-nothing架构;通过数据冗余与副本管理确保数据库无单点故障;数据sharding与分布式并行计算实现数据库系统高性能;可无限制动态扩展数据节点,满足业务需要。
整体架构如下图所示:
技术分享 | 在GreatDB分布式部署模式中使用Chaos Mesh做混沌测试
文章图片

2. 环境准备 2.1 Chaos Mesh安装 在安装Chaos Mesh之前请确保已经预先安装了helm,docker,并准备好了一个kubernetes环境。
1)在 Helm 仓库中添加 Chaos Mesh 仓库:
helm repo add chaos-mesh https://charts.chaos-mesh.org

2)查看可以安装的 Chaos Mesh 版本:
helm search repo chaos-mesh

3)创建安装 Chaos Mesh 的命名空间:
kubectl create ns chaos-testing

4)在docker环境下安装Chaos Mesh:
helm install chaos-mesh chaos-mesh/chaos-mesh -n=chaos-testing

验证安装
执行以下命令查看Chaos Mesh的运行情况:
kubectl get pod -n chaos-testing

下面是预期输出:
NAMEREADYSTATUSRESTARTSAGE chaos-controller-manager-d7bc9ccb5-dbccq1/1Running026d chaos-daemon-pzxc71/1Running026d chaos-dashboard-5887f7559b-kgz461/1Running126d

如果3个pod的状态都是Running,表示 Chaos Mesh 已经成功安装。
2.2 准备测试需要的镜像 2.2.1 准备mysql镜像
一般情况下,mysql使用官方5.7版本的镜像,mysql监控采集器使用的是mysqld-exporter,也可以直接从docker hub下载:
docker pull mysql:5.7 docker pull prom/mysqld-exporter

2.2.2 准备zookeeper镜像
zookeeper使用的是官方3.5.5版本镜像,zookeeper组件涉及的监控有jmx-prometheus-exporter 和zookeeper-exporter,均从docker hub下载:
docker pull zookeeper:3.5.5 docker pull sscaling/jmx-prometheus-exporter docker pull josdotso/zookeeper-exporter

2.2.3 准备GreatDB镜像
选择一个GreatDB的tar包,将其解压得到一个./greatdb目录,再将greatdb-service-docker.sh文件拷贝到这个解压出来的./greatdb目录里:
cp greatdb-service-docker.sh ./greatdb/

将greatdb Dockerfile放到./greatdb文件夹的同级目录下,然后执行以下命令构建GreatDB镜像:
docker build -t greatdb/greatdb:tag2021 .

2.2.4 准备GreatDB分布式集群部署/清理的镜像
下载集群部署脚本cluster-setup,集群初始化脚本init-zk 以及集群helm charts包(可咨询4.0开发/测试组获取)
将上述材料放在同一目录下,编写如下Dockerfile:
FROM debian:buster-slim as init-zkCOPY ./init-zk /root/init-zk RUN chmod +x /root/init-zkFROM debian:buster-slim as cluster-setup \# Set aliyun repo for speed RUN sed -i 's/deb.debian.org/mirrors.aliyun.com/g' /etc/apt/sources.list && \ sed -i 's/security.debian.org/mirrors.aliyun.com/g' /etc/apt/sources.listRUN apt-get -y update && \ apt-get -y install \ curl \ wgetRUN curl -L https://storage.googleapis.com/kubernetes-release/release/v1.20.1/bin/linux/amd64/kubectl -o /usr/local/bin/kubectl && \ chmod +x /usr/local/bin/kubectl && \ mkdir /root/.kube && \ wget https://get.helm.sh/helm-v3.5.3-linux-amd64.tar.gz && \ tar -zxvf helm-v3.5.3-linux-amd64.tar.gz && \ mv linux-amd64/helm /usr/local/bin/helmCOPY ./config /root/.kube/ COPY ./helm /helm COPY ./cluster-setup /

执行以下命令构建所需镜像:
docker build --target init-zk -t greatdb/initzk:latest .docker build --target cluster-setup -t greatdb/cluster-setup:v1 .

2.2.5 准备测试用例的镜像
目前测试支持的用例有:bank,bank2,pbank,tpcc,flashback等,每个用例都是一个可执行文件。
以flashback测例为例构建测试用例的镜像,先将用例下载到本地,在用例的同一目录下编写如下内容的Dockerfile:
FROM debian:buster-slim COPY ./flashback / RUN cd / && chmod +x ./flashback

执行以下命令构建测试用例镜像:
docker build -t greatdb/testsuite-flashback:v1 .

2.3 将准备好的镜像上传到私有仓库中 创建私有仓库和上传镜像操作请参考:https://zhuanlan.zhihu.com/p/...
3. Chaos Mesh的使用 3.1 搭建GreatDB分布式集群 在上一章2.2.4 中cluster-setup目录下执行以下命令块去搭建测试集群:
./cluster-setup\ -clustername=c0 \ -namespace=test \ -enable-monitor=true \ -mysql-image=mysql:5.7 \ -mysql-replica=3 \ -mysql-auth=1 \ -mysql-normal=1 \ -mysql-global=1 \ -mysql-partition=1 \ -zookeeper-repository=zookeeper \ -zookeeper-tag=3.5.5 \ -zookeeper-replica=3 \ -greatdb-repository=greatdb/greatdb \ -greatdb-tag=tag202110 \ -greatdb-replica=3 \ -greatdb-serviceHost=172.16.70.249

输出信息:
liuxinle@liuxinle-OptiPlex-5060:~/k8s/cluster-setup$ ./cluster-setup \ > -clustername=c0 \ > -namespace=test \ > -enable-monitor=true \ > -mysql-image=mysql:5.7 \ > -mysql-replica=3 \ > -mysql-auth=1 \ > -mysql-normal=1 \ > -mysql-global=1 \ > -mysql-partition=1 \ > -zookeeper-repository=zookeeper \ > -zookeeper-tag=3.5.5 \ > -zookeeper-replica=3 \ > -greatdb-repository=greatdb/greatdb \ > -greatdb-tag=tag202110 \ > -greatdb-replica=3 \ > -greatdb-serviceHost=172.16.70.249 INFO[2021-10-14T10:41:52+08:00] SetUp the cluster ...NameSpace=test INFO[2021-10-14T10:41:52+08:00] create namespace ... INFO[2021-10-14T10:41:57+08:00] copy helm chart templates ... INFO[2021-10-14T10:41:57+08:00] setup ...Component=MySQL INFO[2021-10-14T10:41:57+08:00] exec helm install and update greatdb-cfg.yaml ... INFO[2021-10-14T10:42:00+08:00] waiting mysql pods running ... INFO[2021-10-14T10:44:27+08:00] setup ...Component=Zookeeper INFO[2021-10-14T10:44:28+08:00] waiting zookeeper pods running ... INFO[2021-10-14T10:46:59+08:00] update greatdb-cfg.yaml INFO[2021-10-14T10:46:59+08:00] setup ...Component=greatdb INFO[2021-10-14T10:47:00+08:00] waiting greatdb pods running ... INFO[2021-10-14T10:47:21+08:00] waiting cluster running ... INFO[2021-10-14T10:47:27+08:00] waiting prometheus server running... INFO[2021-10-14T10:47:27+08:00] Dump Cluster Info INFO[2021-10-14T10:47:27+08:00] SetUp success.ClusterName=c0 NameSpace=test

看到c0-zookeeper-initzk-7hbfs的状态是Completed,其他pod的状态为Running,表示集群搭建成功。
3.2 在GreatDB分布式集群中使用Chaos Mesh做混沌测试 Chaos Mesh在kubernetes环境支持注入的故障类型包括:模拟Pod故障、模拟网络故障、模拟压力场景等,这里我们以模拟Pod故障中的pod-kill为例。
将实验配置写入到文件中 pod-kill.yaml,内容示例如下:
apiVersion: chaos-mesh.org/v1alpha1 kind: PodChaos# 要注入的故障类型 metadata: name: pod-failure-example namespace: test# 测试集群pod所在的namespace spec: action: pod-kill# 要注入的具体故障类型 mode: all# 指定实验的运行方式,all(表示选出所有符合条件的 Pod) duration: '30s'# 指定实验的持续时间 selector: labelSelectors: "app.kubernetes.io/component": "greatdb"# 指定注入故障目标pod的标签,通过kubectl describe pod c0-greatdb-1 -n test 命令返回结果中Labels后的内容得到

创建故障实验,命令如下:
kubectl create -n test -f pod-kill.yaml

创建完故障实验之后,执行命令 kubectl get pod -n test -o wide 结果如下:
NAMEREADYSTATUSRESTARTSAGEIPNODENOMINATED NODEREADINESS GATES c0-auth0-mysql-02/2Running014m10.244.87.18liuxinle-optiplex-5060 c0-auth0-mysql-12/2Running014m10.244.87.54liuxinle-optiplex-5060 c0-auth0-mysql-22/2Running013m10.244.87.57liuxinle-optiplex-5060 c0-greatdb-00/2ContainerCreating02sliuxinle-optiplex-5060 c0-greatdb-10/2ContainerCreating02sliuxinle-optiplex-5060 c0-glob0-mysql-02/2Running014m10.244.87.51liuxinle-optiplex-5060 c0-glob0-mysql-12/2Running014m10.244.87.41liuxinle-optiplex-5060 c0-glob0-mysql-22/2Running013m10.244.87.60liuxinle-optiplex-5060 c0-nor0-mysql-02/2Running014m10.244.87.29liuxinle-optiplex-5060 c0-nor0-mysql-12/2Running014m10.244.87.4liuxinle-optiplex-5060 c0-nor0-mysql-22/2Running013m10.244.87.25liuxinle-optiplex-5060 c0-par0-mysql-02/2Running014m10.244.87.55liuxinle-optiplex-5060 c0-par0-mysql-12/2Running014m10.244.87.13liuxinle-optiplex-5060 c0-par0-mysql-22/2Running013m10.244.87.21liuxinle-optiplex-5060 c0-prometheus-server-6697649b76-fkvh92/2Running09m24s10.244.87.37liuxinle-optiplex-5060 c0-zookeeper-01/1Running112m10.244.87.44liuxinle-optiplex-5060 c0-zookeeper-11/1Running011m10.244.87.30liuxinle-optiplex-5060 c0-zookeeper-21/1Running010m10.244.87.49liuxinle-optiplex-5060 c0-zookeeper-initzk-7hbfs0/1Completed012m10.244.87.17liuxinle-optiplex-5060

4. 在argo中编排测试流程 Argo 是一个开源的容器本地工作流引擎,用于在Kubernetes上完成工作,可以将多步骤工作流建模为一系列任务,完成测试流程编排。
我们使用argo定义一个测试任务,基本的测试流程是固定的,如下所示:
技术分享 | 在GreatDB分布式部署模式中使用Chaos Mesh做混沌测试
文章图片

测试流程的step1是部署测试集群,接着开启两个并行任务,step2跑测试用例,模拟业务场景,step3同时使用Chaos Mesh注入故障,step2的测试用例执行结束之后,step4终止故障注入,最后step5清理集群环境。
4.1 用argo编排一个混沌测试工作流(以flashback测试用例为例) 1)修改 cluster-setup.yaml 中的image信息,改成步骤2.2 准备测试需要的镜像中自己传上去的集群部署/清理镜像名和tag
2)修改 testsuite-flashback.yaml 中的image信息,改成步骤2.2 准备测试需要的镜像中自己传上去的测试用例镜像名和tag
3)将集群部署、测试用例和工具模板的yaml文件全部使用 kubectl apply -n argo -f xxx.yaml 命令创建资源 (这些文件定义了一些argo template,方便用户写workflow时候使用)
kubectl apply -n argo -f cluster-setup.yaml kubectl apply -n argo -f testsuite-flashback.yaml kubectl apply -n argo -f tools-template.yaml

4)复制一份workflow模板文件 workflow-template.yaml,将模板文件中注释提示的部分修改为自己的设置即可,然后执行以下命令创建混沌测试工作流:
kubectl apply -n argo -f workflow-template.yaml

以下是一份workflow模板文件:
apiVersion: argoproj.io/v1alpha1 kind: Workflow metadata: generateName: chaostest-c0-0- name: chaostest-c0-0 namespace: argo spec: entrypoint: test-entry #测试入口,在这里传入测试参数,填写clustername、namespace、host、greatdb镜像名和tag名等基本信息 serviceAccountName: argo arguments: parameters: - name: clustername value: c0 - name: namespace value: test - name: host value: 172.16.70.249 - name: port value: 30901 - name: password value: Bgview@2020 - name: user value: root - name: run-time value: 10m - name: greatdb-repository value: greatdb/greatdb - name: greatdb-tag value: tag202110 - name: nemesis value: kill_mysql_normal_master,kill_mysql_normal_slave,kill_mysql_partition_master,kill_mysql_partition_slave,kill_mysql_auth_master,kill_mysql_auth_slave,kill_mysql_global_master,kill_mysql_global_slave,kill_mysql_master,kill_mysql_slave,net_partition_mysql_normal,net_partition_mysql_partition,net_partition_mysql_auth,net_partition_mysql_global - name: mysql-partition value: 1 - name: mysql-global value: 1 - name: mysql-auth value: 1 - name: mysql-normal value: 2 templates: - name: test-entry steps: - - name: setup-greatdb-cluster# step.1 集群部署. 请指定正确的参数,主要是mysql和zookeeper的镜像名、tag名 templateRef: name: cluster-setup-template template: cluster-setup arguments: parameters: - name: namespace value: "{{workflow.parameters.namespace}}" - name: clustername value: "{{workflow.parameters.clustername}}" - name: mysql-image value: mysql:5.7.34 - name: mysql-replica value: 3 - name: mysql-auth value: "{{workflow.parameters.mysql-auth}}" - name: mysql-normal value: "{{workflow.parameters.mysql-normal}}" - name: mysql-partition value: "{{workflow.parameters.mysql-partition}}" - name: mysql-global value: "{{workflow.parameters.mysql-global}}" - name: enable-monitor value: false - name: zookeeper-repository value: zookeeper - name: zookeeper-tag value: 3.5.5 - name: zookeeper-replica value: 3 - name: greatdb-repository value: "{{workflow.parameters.greatdb-repository}}" - name: greatdb-tag value: "{{workflow.parameters.greatdb-tag}}" - name: greatdb-replica value: 3 - name: greatdb-serviceHost value: "{{workflow.parameters.host}}" - name: greatdb-servicePort value: "{{workflow.parameters.port}}" - - name: run-flashbacktest# step.2 运行测试用例,请替换为你要运行的测试用例template并指定正确的参数,主要是测试使用的表个数和大小 templateRef: name: flashback-test-template template: flashback arguments: parameters: - name: user value: "{{workflow.parameters.user}}" - name: password value: "{{workflow.parameters.password}}" - name: host value: "{{workflow.parameters.host}}" - name: port value: "{{workflow.parameters.port}}" - name: concurrency value: 16 - name: size value: 10000 - name: tables value: 10 - name: run-time value: "{{workflow.parameters.run-time}}" - name: single-statement value: true - name: manage-statement value: true - name: invoke-chaos-for-flashabck-test# step.3 注入故障,请指定正确的参数,这里run-time和interval分别定义了故障注入的时间和频次,因此省略掉了终止故障注入步骤 templateRef: name: chaos-rto-template template: chaos-rto arguments: parameters: - name: user value: "{{workflow.parameters.user}}" - name: host value: "{{workflow.parameters.host}}" - name: password value: "{{workflow.parameters.password}}" - name: port value: "{{workflow.parameters.port}}" - name: k8s-config value: /root/.kube/config - name: namespace value: "{{workflow.parameters.namespace}}" - name: clustername value: "{{workflow.parameters.clustername}}" - name: prometheus value: '' - name: greatdb-job value: greatdb-monitor-greatdb - name: nemesis value: "{{workflow.parameters.nemesis}}" - name: nemesis-duration value: 1m - name: nemesis-mode value: default - name: wait-time value: 5m - name: check-time value: 5m - name: nemesis-scope value: 1 - name: nemesis-log value: true - name: enable-monitor value: false - name: run-time value: "{{workflow.parameters.run-time}}" - name: interval value: 1m - name: monitor-log value: false - name: enable-rto value: false - name: rto-qps value: 0.1 - name: rto-warm value: 5m - name: rto-time value: 1m - name: log-level value: debug - - name: flashbacktest-output# 输出测试用例是否通过的结果 templateRef: name: tools-template template: output-result arguments: parameters: - name: info value: "flashback test pass, with nemesis: {{workflow.parameters.nemesis}}" - - name: clean-greatdb-cluster# step.4 清理测试集群,这里的参数和step.1的参数一致 templateRef: name: cluster-setup-template template: cluster-setup arguments: parameters: - name: namespace value: "{{workflow.parameters.namespace}}" - name: clustername value: "{{workflow.parameters.clustername}}" - name: mysql-image value: mysql:5.7 - name: mysql-replica value: 3 - name: mysql-auth value: "{{workflow.parameters.mysql-auth}}" - name: mysql-normal value: "{{workflow.parameters.mysql-normal}}" - name: mysql-partition value: "{{workflow.parameters.mysql-partition}}" - name: mysql-global value: "{{workflow.parameters.mysql-global}}" - name: enable-monitor value: false - name: zookeeper-repository value: zookeeper - name: zookeeper-tag value: 3.5.5 - name: zookeeper-replica value: 3 - name: greatdb-repository value: "{{workflow.parameters.greatdb-repository}}" - name: greatdb-tag value: "{{workflow.parameters.greatdb-tag}}" - name: greatdb-replica value: 3 - name: greatdb-serviceHost value: "{{workflow.parameters.host}}" - name: greatdb-servicePort value: "{{workflow.parameters.port}}" - name: clean value: true - - name: echo-result templateRef: name: tools-template template: echo arguments: parameters: - name: info value: "{{item}}" withItems: - "{{steps.flashbacktest-output.outputs.parameters.result}}"

【技术分享 | 在GreatDB分布式部署模式中使用Chaos Mesh做混沌测试】Enjoy GreatSQL :)
文章推荐: GreatSQL MGR FAQ
https://mp.weixin.qq.com/s/J6...
万答#12,MGR整个集群挂掉后,如何才能自动选主,不用手动干预
https://mp.weixin.qq.com/s/07...
『2021数据技术嘉年华·ON LINE』:《MySQL高可用架构演进及实践》
https://mp.weixin.qq.com/s/u7...
一条sql语句慢在哪之抓包分析
https://mp.weixin.qq.com/s/AY...
万答#15,都有哪些情况可能导致MGR服务无法启动
https://mp.weixin.qq.com/s/in...
技术分享 | 为什么MGR一致性模式不推荐AFTER
https://mp.weixin.qq.com/s/rN...
关于 GreatSQL GreatSQL是由万里数据库维护的MySQL分支,专注于提升MGR可靠性及性能,支持InnoDB并行查询特性,是适用于金融级应用的MySQL分支版本。
Gitee:
https://gitee.com/GreatSQL/Gr...
GitHub:
https://github.com/GreatSQL/G...
Bilibili:
https://space.bilibili.com/13...
微信&QQ群:
可搜索添加GreatSQL社区助手微信好友,发送验证信息“加群”加入GreatSQL/MGR交流微信群
QQ群:533341697
微信小助手:wanlidbc
本文由博客一文多发平台 OpenWrite 发布!

    推荐阅读