文章插图
四个点在圆上的四边形是圆的内接四边形 。圆内接四边形对角互补,外角等于它的内对角 。特点是任意一个外角等于它的内对角,并且四个点都在圆上 。证明依据:①圆周角等于圆心角一半 。②圆周角等于360° 。
圆内接四边形对角互补证明圆内接四边形性质【为什么圆内接四边形对角互补】1、圆内接四边形的对角互补:∠BAD+∠DCB=180°,∠ABC+∠ADC=180°
2、圆内接四边形的任意一个外角等于它的内对角:∠CBE=∠ADC
3、圆心角的度数等于所对弧的圆周角的度数的两倍:∠AOB=2∠ACB=2∠ADB
4、同弧所对的圆周角相等:∠ABD=∠ACD
5、圆内接四边形对应三角形相似:△ABP∽△DCP
6、相交弦定理:AP×CP=BP×DP
7、托勒密定理:AB×CD+AD×CB=AC×BD
推荐阅读
- 显卡催化剂驱动是什么?AMD显卡催化剂有效果吗?
- AI少女第三人称怎么拉远视角 第三人称拉远视角方法介绍
- 摩卡有咖啡成分吗
- Windows 7 SP1 简体中文版 x86 x64全系列中文版 免费下载
- 建筑学大一应该看什么样的书
- 用PS把美女的直发变卷发效果教程
- AI少女妹子病倒怎么办 AI少女妹子病倒解决方法分享
- 蜂窝网络错误怎么回事
- 定期存款怎么计算时间