即0.01=10-2
六、巩固练习
1.课本第47页习题1.5第1、2题.
七、课堂小结
用科学记数法表示较大的数时,注意a×10n中a的范围是1≤a<10,n是正整数,n与原数的整数部分的位数m的关系是m-1=n,反过来由用科学记数法表示的数写出原数时,原数的整数部分的数位m比10的指数大1.(即m=n+1)
另外,对于绝对值较大的负数,如-729000,它可表示为-7.29×105,它的意义是7.29×105的相反数,这里的a仍然是1≤a<10.
对于较小的数,如0.00012,因为0.00012=1.2÷10000=1.2÷104=1.2× =1.2×10-4.
八、作业布置
1.课本第47页习题1.5第4、5、9、10题.
九、板书设计:
1.5.2 科学记数法
第三课时
1. 像上面这样,把一个大于10的数表示成a×10n的形式,其中a是整数数位只有一位的数(1≤a<10),n是正整数,这种记数 *** 叫科学记数法.
2、随堂练习 。
3、小结 。
4、课后作业 。
十、课后反思
1.5.3 近似数
第四课时
三维目标
一、知识与技能
(1)给了一个近似数,你能说出它精确到哪一位,有几个有效数字.
(2)给了一个数,会按照精确到哪一位或保留几个有效数字的要求,四舍五入取近似数.
二、过程与 ***
从测量引入近似数,使学生体会近似数的意义和生活中的应用.
三、情感态度与价值观
培养学生认真细致的学习态度,合作交流的意识.
教学重、难点与关键
1.重点:近似数,精确度,有效数字概念.
2.难点:由给出的近似数求其精确度及有效数字.
3.关键:理解有效数字的概念和小数点末尾的零的意义.
四、教学过程,课堂引入
1.准确数和近似数.
在日常生活和生产实际中,我们接触到很多这样的数.例如:对于参加同一个会议的人数,有两种报道,一种报道说:“会议秘书处宣布,参加今天会议的有513人”.这里数字513确切地反映了实际人数,它是一个准确数,另一种报道说:“约有500人参加了今天的会议”,500这个数只能接近实际人数,但与实际人数还有差别,它是一个近似数.
例如,统计班上喜欢看球赛同学的人数是35,这个数是与实际完全符合的准确数,一个也不多,一个也不少,又如,初一(1)班有55个学生,某工厂有126台机床,我有8本练习本,这些数都是与实际完全符合的准确数.
如果量得语文课本的宽为13.5cm,由于所用尺的刻度有精确度限制,而且用眼观察时不可能非常细致,因此与实际宽度有一点偏差,这里的13.5cm只是一个与实际宽度非常接近的数,又如,宇宙现在的年龄约为200亿年,长江长约6300千米,圆周率 约为3.14,这些数都是近似数.
五、新授
在许多情况下,很难取得准确数,或者不必使用准确数,而可以使用近似数.
你还能举出一些日常遇到的近似数吗?
2.关于精确度问题
近似数与准确数的接近程度,可以用精确度表示,例如,前面的500是精确到百位的近似数,它与准确数513的误差为13.
我们都知道圆周率 =3.141592…
计算时我们需按照要求取近似数.
如果要求按四舍五入精确到个位,那么≈3;
如果要求按四舍五入精确到0.1(或精确到十分位),那么 ≈3.1;
如果要求按四舍五入精确到0.01(或精确到百分位),那么 ≈3.14;
如果要求按四舍五入精确到0.001(或精确到千分位),那么 ≈_______;
反过来,若 ≈3.1416,那么精确到________,或叫精确到_______.
一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.
推荐阅读
- 四时田园杂兴(其二十五 范成大四时田园杂兴其二十五翻译翻译300字)
- 有的人ppt课件_有的人ppt课件七彩课堂免费
- 生男生女测试法 生男生女测试表2023
- 东风标致408怎么样 东风标致408x
- 半导体冰箱和压缩机冰箱的区别 半导体冰箱优缺点
- 高速免费时间2018年,高速免费时间2024
- 绿豆没有熟透可以吃吗
- 湖州职业技术学院,浙江湖州职业学院
- 远视隐形眼镜