无差异函数python 无差别输出( 三 )


(2) 示例
(3) 结果分析
?返回结果的第一个值为相关系数表示线性相关程度,本例中correlation趋近于1表示正相关 。第二个值为p-value , p-value越小,表示相关程度越显著 。
8. 单样本T检验
(1) 用途
?单样本T检验,用于检验数据是否来自一致均值的总体,T检验主要是以均值为核心的检验 。注意以下几种T检验都是双侧T检验 。
(2) 示例
(3) 结果分析
?本例中生成了2列100行的数组,ttest_1samp的第二个参数是分别对两列估计的均值 , p-value返回结果,第一列1.47820719e-06比指定的显著水平(一般为5%)小,认为差异显著,拒绝假设;第二列2.83088106e-01大于指定显著水平,不能拒绝假设:服从正态分布 。
9. 两独立样本T检验
(1) 用途
?由于比较两组数据是否来自于同一正态分布的总体 。注意:如果要比较的两组数据不满足方差齐性,需要在ttest_ind()函数中添加参数equal_var = False 。
(2) 示例
(3) 结果分析
?返回结果的第一个值为统计量,第二个值为p-value,pvalue=https://www.04ip.com/post/0.19313343989106416,比指定的显著水平(一般为5%)大,不能拒绝假设,两组数据来自于同一总结,两组数据之间无差异 。
10. 配对样本T检验
(1) 用途
?配对样本T检验可视为单样本T检验的扩展,检验的对象由一群来自正态分布独立样本更改为二群配对样本观测值之差 。它常用于比较同一受试对象处理的前后差异,或者按照某一条件进行两两配对分别给与不同处理的受试对象之间是否存在差异 。
(2) 示例
(3) 结果分析
?返回结果的第一个值为统计量,第二个值为p-value , pvalue=https://www.04ip.com/post/0.80964043445811551,比指定的显著水平(一般为5%)大,不能拒绝假设 。
11. 单因素方差分析
(1) 用途
?方差分析(Analysis of Variance,简称ANOVA) , 又称F检验,用于两个及两个以上样本均数差别的显著性检验 。方差分析主要是考虑各组之间的平均数差别 。
?单因素方差分析(One-wayAnova),是检验由单一因素影响的多组样本某因变量的均值是否有显著差异 。
?当因变量Y是数值型 , 自变量X是分类值,通常的做法是按X的类别把实例成分几组,分析Y值在X的不同分组中是否存在差异 。
(2) 示例
(3) 结果分析
?返回结果的第一个值为统计量,它由组间差异除以组间差异得到 , 上例中组间差异很大,第二个返回值p-value=https://www.04ip.com/post/6.2231520821576832e-19小于边界值(一般为0.05),拒绝原假设, 即认为以上三组数据存在统计学差异,并不能判断是哪两组之间存在差异。只有两组数据时 , 效果同 stats.levene 一样 。
12. 多因素方差分析
(1) 用途
?当有两个或者两个以上自变量对因变量产生影响时,可以用多因素方差分析的方法来进行分析 。它不仅要考虑每个因素的主效应,还要考虑因素之间的交互效应 。
(2) 示例
(3) 结果分析
?上述程序定义了公式,公式中,"~"用于隔离因变量和自变量,”+“用于分隔各个自变量,":"表示两个自变量交互影响 。从返回结果的P值可以看出,X1和X2的值组间差异不大,而组合后的T:G的组间有明显差异 。
13. 卡方检验
(1) 用途
?上面介绍的T检验是参数检验,卡方检验是一种非参数检验方法 。相对来说,非参数检验对数据分布的要求比较宽松,并且也不要求太大数据量 。卡方检验是一种对计数资料的假设检验方法,主要是比较理论频数和实际频数的吻合程度 。常用于特征选择,比如,检验男人和女人在是否患有高血压上有无区别,如果有区别 , 则说明性别与是否患有高血压有关,在后续分析时就需要把性别这个分类变量放入模型训练 。

推荐阅读