无差异函数python 无差别输出( 四 )


?基本数据有R行C列, 故通称RC列联表(contingency table), 简称RC表 , 它是观测数据按两个或更多属性(定性变量)分类时所列出的频数表 。
(2) 示例
(3) 结果分析
?卡方检验函数的参数是列联表中的频数,返回结果第一个值为统计量值,第二个结果为p-value值,p-value=https://www.04ip.com/post/0.54543425102570975,比指定的显著水平(一般5%)大,不能拒绝原假设,即相关性不显著 。第三个结果是自由度,第四个结果的数组是列联表的期望值分布 。
14. 单变量统计分析
(1) 用途
?单变量统计描述是数据分析中最简单的形式 , 其中被分析的数据只包含一个变量,不处理原因或关系 。单变量分析的主要目的是通过对数据的统计描述了解当前数据的基本情况,并找出数据的分布模型 。
?单变量数据统计描述从集中趋势上看,指标有:均值 , 中位数,分位数,众数;从离散程度上看 , 指标有:极差、四分位数、方差、标准差、协方差、变异系数 , 从分布上看,有偏度,峰度等 。需要考虑的还有极大值,极小值(数值型变量)和频数 , 构成比(分类或等级变量) 。
?此外,还可以用统计图直观展示数据分布特征,如:柱状图、正方图、箱式图、频率多边形和饼状图 。
15. 多元线性回归
(1) 用途
?多元线性回归模型(multivariable linear regression model ),因变量Y(计量资料)往往受到多个变量X的影响,多元线性回归模型用于计算各个自变量对因变量的影响程度,可以认为是对多维空间中的点做线性拟合 。
(2) 示例
(3) 结果分析
?直接通过返回结果中各变量的P值与0.05比较,来判定对应的解释变量的显著性,P0.05则认为自变量具有统计学意义 , 从上例中可以看到收入INCOME最有显著性 。
16. 逻辑回归
(1) 用途
?当因变量Y为2分类变量(或多分类变量时)可以用相应的logistic回归分析各个自变量对因变量的影响程度 。
(2) 示例
(3) 结果分析
?直接通过返回结果中各变量的P值与0.05比较,来判定对应的解释变量的显著性,P0.05则认为自变量具有统计学意义 。
一文读懂Python 高阶函数将函数作为参数传入无差异函数python,这样的函数称为高阶函数 。函数式编程就是指这种高度抽象的编程范式 。
变量可以指向函数 , 函数的参数能接收变量,那么一个函数就可以接收另一个函数作为参数,这种函数就称之为高阶函数 。如下所示:
map(fun, lst),将传入的函数变量func作用到lst变量的每个元素中,并将结果组成新的列表返回 。
定义一个匿名函数并调用 , 定义格式如--lambda arg1,arg2…:表达式
reduce把一个函数作用在一个序列[x1, x2, x3, …]上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累积计算 。
filter() 函数用于过滤序列,过滤掉不符合条件的元素,返回由符合条件元素组成的新列表 。
闭包的定义无差异函数python?闭包本质上就是一个函数
如何创建闭包?
如何使用闭包?典型的使用场景是装饰器的使用 。
global与nonlocal的区别:
简单的使用如下:
偏函数主要辅助原函数,作用其实和原函数差不多 , 不同的是,我们要多次调用原函数的时候,有些参数,我们需要多次手动的去提供值 。
而偏函数便可简化这些操作,减少函数调用 , 主要是将一个或多个参数预先赋值,以便函数能用更少的参数进行调用 。
我们再来看一下偏函数的定义:

推荐阅读