python高阶函数内置 python求高阶导数

python高阶函数有哪些1、map
map()函数接受两个参数,一个是函数,一个是Iterable,map将传入的函数依次作用到序列的每一个元素上,并把结果作为新的Iterator返回 。
举例,比如我们有一个函数f(x)=x*2,要把这个函数作用在一个list[1, 2, 3, 4, 5, 6, 7, 8,
9]上 , 就可以用map()实现 。
def f(x):
... return x*2
...
r = map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])
list(r)
[2, 4, 6, 8, 10, 12, 14, 16, 18]
所以,map()作为高阶函数,事实上它把运算规则抽象了,因此,我们不但可以计算简单的f(x)=x*2,还可以计算任意复杂的函数,比如把这个list所有的数字转为字符串:
list(map(str,[1, 2, 3, 4, 5, 6, 7, 8, 9]))
["1", "2", "3", "4", "5", "6", "7", "8", "9"]
2、reduce
reduce是把一个函数作用在一个序列[x1, x2,
x3……]上 , 这个函数必须接收两个参数 , reduce把结果继续和序列的下一个元素做累计计算 。简单来说,就是先计算x1和x2的结果,再拿结果与x3计算,依次类推 。比如说一个序列求和,就可以用reduce实现 。
from functools import reduce
def add(x, y):
【python高阶函数内置 python求高阶导数】... return x + y
...
reduce(add, [1, 3, 5, 7, 9])
25
也就是说,假设python没有提供int()函数,你完全可以自己写一个把字符串转化为整数的函数,而且只需要几行代码 。
3、filter
用于过滤序列 , 和map函数类似,filter也接收一个函数和一个序列,不同于map的是,filter把传入的函数依次作用于每一个元素 , 然后根据返回值是True还是False决定保留还是丢弃该元素,例如,在一个list中,删掉偶数,只保留奇数,可以这么写:
def is_odd(n):
return n % 2 == 1
list(filter(is_odd, [1, 2, 4, 5, 6, 9, 10, 15]))
# 结果: [1, 5, 9, 15]
把一个序列中的空字符串删掉 , 可以这么写:
def not_empty(s):
return s and s.strip()
list(filter(not_empty, ["A", "", "B", None, "C", " "]))
# 结果: ["A", "B", "C"]
可见用filter()这个高阶函数,关键在于正确实现一个筛选函数 。
4、sorted
无论冒泡排序还是快速排序,排序的核心是比较两个元素的大小 。如果是数字,我们可以直接比较,但如果是字符串或者两个dict呢?直接比较数学上的大小是没有意义的 , 因此,比较的过程必须通过函数抽象出来,Python内置的sorted()函数就可以对list进行排序:
sorted([36, 5, -12, 9, -21])
[-21, -12, 5, 9, 36]
此外,sorted()函数也是一个高阶函数,它还可以接收一个key函数来实现自定义的排序,例如按绝对值大小排序:
sorted([36, 5, -12, 9, -21], key=abs)
[5, 9, -12, -21, 36]
Python 之内置函数:filter、map、reduce、zip、enumerate这几个函数在 Python 里面被称为高阶函数python高阶函数内置,本文主要学习它们的用法 。
filter 函数原型如下python高阶函数内置:
第一个参数是判断函数(返回结果需要是 True 或者 False)python高阶函数内置,第二个为序列,该函数将对iterable序列依次执行function(item)操作,返回结果是过滤之后结果组成的序列 。
简单记忆:对序列中的元素进行筛选,获取符合条件的序列 。
返回结果为:,使用list函数可以输入序列内容 。
map 函数原型如下:
该函数运行之后生成一个 list,第一个参数是函数、第二个参数是一个或多个序列python高阶函数内置;
下述代码是一个简单的测试案例:
上述代码运行完毕,得到的结果是:。使用print(list(my_new_list))可以得到结果 。

推荐阅读