比如,对降噪处理后的“skip”语音信号做静音剪切,得到的新信号的频谱图为:
Python科学计算——复杂信号FFTFFT (Fast Fourier Transform, 快速傅里叶变换) 是离散傅里叶变换的快速算法python定义窗函数,也是数字信号处理技术中经常会提到的一个概念 。用快速傅里叶变换能将时域的数字信号转换为频域信号,转换为频域信号后我们可以很方便地分析出信号的频率成分 。
当我们把双频信号FFT示例中的 fft_size 的值改为 2**12 时,这时,基频为 16Hz,不能被 1kHz整除,所以 1kHz 处发生python定义窗函数了频谱泄露,而它能被 4kHz 整除 , 所以 4kHz 可以很好地被采样 。
由于波形的前后不是连续的,出现波形跳变,而跳变处有着非常广泛的频谱,因此FFT的结果中出现了频谱泄漏 。
为了减小FFT所截取的数据段前后的跳变,可以对数据先乘以一个窗函数,使得其前后数据能平滑过渡 。常用的hanning窗函数的定义如下python定义窗函数:
50Hz 正弦波与hann窗函数乘积之后的重复波形如下python定义窗函数:
我们对频谱泄漏示例中的1kHz 和 4kHz 信号进行了 hann 窗函数处理,可以看出能量更加集中在 1kHz 和 4kHz,在一定程度上抑制了频谱泄漏 。
以 1kHz 三角波为例,我们知道三角波信号中含有丰富的频率信息,它的傅里叶级数展开为:
当数字信号的频率随时间变化时,我们称之为扫频信号 。以频率随时间线性变化的扫频信号为例,其数学形式如下:
其频率随时间线性变化 , 当我们在 [0,1] 的时间窗口对其进行采样时 , 其频率范围为 0~5kHz 。当时间是连续时 , 扫频信号的频率也是连续的 。但是在实际的处理中,是离散的点采样 , 因此时间是不连续的,这就使扫频信号的快速傅里叶变换问题退化为多点频信号快速傅里叶变换问题 。其快速傅里叶变换得到的频谱图如下所示:
以 50Hz 正弦信号相位调制到 1kHz 的信号为例,其信号形式如下:
它的时域波形,频率响应和相位响应如下图所示:
以扫频信号为例 , 当我们要探究FFT中的能量守恒时 , 我们要回归到信号最初的形式:
python定义窗函数的介绍就聊到这里吧,感谢你花时间阅读本站内容 , 更多关于python 窗口函数、python定义窗函数的信息别忘了在本站进行查找喔 。
推荐阅读
- python简单的爬虫框架,python3爬虫框架
- 电脑看电影什么没声,电脑看电影没声音怎么办?
- erp物流信息系统,erp物流管理系统
- 直播卖货为啥有人看我,直播间卖货没人看怎么办
- python中输入幂函数 python求幂的函数
- jquery响应式布局案例,响应式布局ui设计
- 金融体系如何推广传统经济,金融体系如何推广传统经济理论
- 鸿蒙是否支持所有安卓应用,鸿蒙是否支持所有安卓应用软件
- mysql怎么查表的索引 mysql怎么查看表索引