python分布函数曲线 python画分布密度( 三 )


【python分布函数曲线 python画分布密度】 指数分布可能容易和前面的泊松分布混淆,泊松分布强调的是某段时间内随机事件发生的次数的概率分布,而指数分布说的是 随机事件发生的时间间隔 的概率分布 。比如一班地铁进站的间隔时间 。如果随机变量X的概率密度为:
则称X服从指数分布 , 其中的参数λ0 。对应的分布函数 为:
均匀分布的期望值和方差 分别为:
使用Python绘制指数分布的概率分布图:
均匀分布有两种,分为 离散型均匀分布和连续型均匀分布。其中离散型均匀分布最常见的例子就是抛掷骰子啦 。抛掷骰子出现的点数就是一个离散型随机变量 , 点数可能有1,2,3,4 , 5,6 。每个数出现的概率都是1/6 。
设连续型随机变量X具有概率密度函数:
则称X服从区间(a,b)上的均匀分布 。X在等长度的子区间内取值的概率相同 。对应的分布函数为:
f(x)和F(x)的图形分别如下图所示:
均匀分布的期望值和方差 分别为:
Python 数据可视化:数据分布统计图和热图本课将继续介绍 Seaborn 中的统计图 。一定要牢记python分布函数曲线,Seaborn 是对 Matplotlib 的高级封装,它优化python分布函数曲线了很多古老的做图过程,因此才会看到一个函数解决问题的局面 。
在统计学中,研究数据的分布情况,也是一个重要的工作,比如某些数据是否为正态分布——某些机器学习模型很在意数据的分布情况 。
在 Matplotlib 中 , 可以通过绘制直方图将数据的分布情况可视化 。在 Seaborn 中,也提供了绘制直方图的函数 。
输出结果python分布函数曲线:
sns.distplot 函数即实现了直方图,还顺带把曲线画出来了——曲线其实代表了 KDE 。
除了 sns.distplot 之外,在 Seaborn 中还有另外一个常用的绘制数据分布的函数 sns.kdeplot,它们的使用方法类似 。
首先看这样一个示例 。
输出结果python分布函数曲线:
① 的作用是设置所得图示的背景颜色 , 这样做的目的是让下面的 ② 绘制的图像显示更清晰,如果不设置 ①,在显示的图示中看到的就是白底图像 , 有的部分看不出来 。
② 最终得到的是坐标网格,而且在图中分为三部分 , 如下图所示 。
相对于以往的坐标网格,多出了 B 和 C 两个部分 。也就是说 , 不仅可以在 A 部分绘制某种统计图,在 B 和 C 部分也可以绘制 。
继续操作:
输出结果:
语句 ③ 实现了在坐标网格中绘制统计图的效果,jp.plot 方法以两个绘图函数为参数,分别在 A 部分绘制了回归统计图,在 B 和 C 部分绘制了直方图 , 而且直方图分别表示了对应坐标轴数据的分布,即:
我们把有语句 ② 和 ③ 共同实现的统计图,称为联合统计图 。除了用 ② ③ 两句可以绘制这种图之外,还有一个函数也能够“两步并作一步”,具体如下:
输出结果:
使用Python构造经验累积分布函数(ECDF)对于一个样本序列,经验累积分布函数 (Empirical Cumulative Distribution Function)可被定义为
其中是一个指示函数,如果,指示函数取值为1,否则取值为0,因此能反映在样本中小于python分布函数曲线的元素数量占比 。
根据格利文科定理(Glivenko–Cantelli Theorem),如果一个样本满足独立同分布(IID),那么其经验累积分布函数会趋近于真实python分布函数曲线的累积分布函数。
首先定义一个类,命名为ECDF:
python分布函数曲线我们采用均匀分布(Uniform)进行验证 , 导入 uniform 包 , 然后进行两轮抽样,第一轮抽取10次,第二轮抽取1000次,比较输出python分布函数曲线的结果 。

推荐阅读