python分布函数曲线 python画分布密度

指数分布与幂律分布的图像对比指数分布(exponential distribution)和幂律分布(power-law distribution)有时看起来很是相似python分布函数曲线,但实际上极为不同 。我用python做python分布函数曲线了两种分布python分布函数曲线的函数plottingpython分布函数曲线,方便直观理解 。可以看到,两种函数转化为双对数形式(这里我用的math.log()是自然对数ln)后图像差异非常明显 。
注释里我给出了几个图分别对应的解析式 , 另外注意因为这里是用离散的点集近似,相当于对分布函数曲线的采样,所以可以得到一个power-law的数值mean,数学上power-law的均值存在须满足一些条件 。
怎么用python表示出二维高斯分布函数,mu表示均值 , sigma表示协方差矩阵,x表示数据点clear
close all
%%%%%%%%%%%%%%%%%%%%%%%%%生成实验数据集
rand('state',0)
sigma_matrix1=eye(2);
sigma_matrix2=50*eye(2);
u1=[0,0];
u2=[30,30];
m1=100;
m2=300;%样本数
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%sm1数据集
Y1=multivrandn(u1,m1,sigma_matrix1);
Y2=multivrandn(u2,m2,sigma_matrix2);
scatter(Y1(:,1),Y1(:,2),'bo')
hold on
scatter(Y2(:,1),Y2(:,2),'r*')
title('SM1数据集')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%sm2数据集
u11=[0,0];
u22=[5,5];
u33=[10,10];
u44=[15,15];
m=600;
sigma_matrix3=2*eye(2);
Y11=multivrandn(u11,m,sigma_matrix3);
Y22=multivrandn(u22,m,sigma_matrix3);
Y33=multivrandn(u33,m,sigma_matrix3);
Y44=multivrandn(u44,m,sigma_matrix3);
figure(2)
scatter(Y11(:,1),Y11(:,2),'bo')
hold on
scatter(Y22(:,1),Y22(:,2),'r*')
scatter(Y33(:,1),Y33(:,2),'go')
scatter(Y44(:,1),Y44(:,2),'c*')
title('SM2数据集')
end
function Y = multivrandn(u,m,sigma_matrix)
%%生成指定均值和协方差矩阵的高斯数据
n=length(u);
c = chol(sigma_matrix);
X=randn(m,n);
Y=X*c+ones(m,1)*u;
end
python怎么画曲线打开Pythonpython分布函数曲线,使用import导入numpy和matplotlib.pyplot模块 。输入函数数据python分布函数曲线,然后使用plt.show()展示绘制python分布函数曲线的图像即可 。
统计学入门级:常见概率分布+python绘制分布图 如果随机变量X的所有取值都可以逐个列举出来,则称X为离散型随机变量 。相应的概率分布有二项分布,泊松分布 。
如果随机变量X的所有取值无法逐个列举出来,而是取数轴上某一区间内的任一点,则称X为连续型随机变量 。相应的概率分布有正态分布,均匀分布,指数分布 , 伽马分布,偏态分布,卡方分布,beta分布等 。(真多分布,好恐怖~~)
在离散型随机变量X的一切可能值中,各可能值与其对应概率的乘积之和称为该随机变量X的期望值,记作E(X)。比如有随机变量,取值依次为:2,2,2,4,5 。求其平均值:(2+2+2+4+5)/5 = 3 。
期望值也就是该随机变量总体的均值 。推导过程如下:
= (2+2+2+4+5)/5
= 1/5 2 3 + 4/5 + 5/5
= 3/5 2 + 1/5 4 + 1/5 5
= 0.6 2 + 0.2 4 + 0.2 5
= 60% 2 + 20% 4 + 20%*5
= 1.2 + 0.8 + 1
= 3
倒数第三步可以解释为值为2的数字出现的概率为60%,4的概率为20%,5的概率为20% 。所以E(X) = 60% 2 + 20% 4 + 20%*5 = μ = 3 。
0-1分布(两点分布),它的随机变量的取值为1或0 。即离散型随机变量X的概率分布为:P{X=0} = 1-p, P{X=1} = p , 即:
则称随机变量X服从参数为p的0-1分布,记作X~B(1,p) 。
在生活中有很多例子服从两点分布 , 比如投资是否中标,新生婴儿是男孩还是女孩,检查产品是否合格等等 。
大家非常熟悉的抛硬币试验对应的分布就是二项分布 。抛硬币试验要么出现正面 , 要么就是反面,只包含这两个结果 。出现正面的次数是一个随机变量 , 这种随机变量所服从的概率分布通常称为 二项分布。

推荐阅读