python扩展函数库 python扩展库扩展名

python数据分析需要哪些库?1.Numpy库
是Python开源的数值计算扩展工具python扩展函数库,提供python扩展函数库了Python对多维数组的支持,能够支持高级的维度数组与矩阵运算 。此外,针对数组运算也提供python扩展函数库了大量的数学函数库,Numpy是大部分Python科学计算的基础 , 具有很多功能 。
2.Pandas库
是一个基于Numpy的数据分析包,为了解决数据分析任务而创建的 。Pandas中纳入了大量库和标准的数据模型,提供了高效地操作大型数据集所需要的函数和方法,使用户能快速便捷地处理数据 。
3.Matplotlib库
是一个用在Python中绘制数组的2D图形库,虽然它起源于模仿MATLAB图形命令,但它独立于MATLAB,可以通过Pythonic和面向对象的方式使用,是Python中Z出色的绘图库 。主要用纯Python语言编写的,它大量使用Numpy和其他扩展代码,即使对大型数组也能提供良好的性能 。
4.Seaborn库
是Python中基于Matplotlib的数据可视化工具 , 提供了很多高层封装的函数,帮助数据分析人员快速绘制美观的数据图形,从而避免了许多额外的参数配置问题 。
5.NLTK库
被称为使用Python进行教学和计算语言学工作的Z佳工具,以及用自然语言进行游戏的神奇图书馆 。NLTK是一个领先的平台,用于构建使用人类语言数据的Python程序,它为超过50个语料库和词汇资源提供了易于使用的接口,还提供了一套文本处理库 , 用于分类、标记化、词干化、解析和语义推理、NLP库的包装器和一个活跃的讨论社区 。
在python中一共有多少个标准库?Python 语言官方的参考手册钟,介绍了与 Python 一同发行的标准库 。
文本处理服务
string --- 常见的字符串操作
re --- 正则表达式操作
difflib --- 计算差异的辅助工具
textwrap --- 文本自动换行与填充
unicodedata --- Unicode 数据库
stringprep --- 因特网字符串预备
readline --- GNU readline 接口
rlcompleter --- GNU readline 的补全函数
二进制数据服务
struct --- 将字节串解读为打包的二进制数据
codecs --- 编解码器注册和相关基类
数据类型
datetime --- 基本日期和时间类型
zoneinfo --- IANA 时区支持
calendar --- 日历相关函数
collections --- 容器数据类型
collections.abc --- 容器的抽象基类
heapq --- 堆队列算法
bisect --- 数组二分查找算法
array --- 高效的数值数组
weakref --- 弱引用
types --- 动态类型创建和内置类型名称
copy --- 浅层 (shallow) 和深层 (deep) 复制操作
pprint --- 数据美化输出
reprlib --- 另一种 repr() 实现
enum --- 对枚举的支持
graphlib --- 操作类似图的结构的功能
数字和数学模块
numbers --- 数字的抽象基类
math --- 数学函数
cmath --- 关于复数的数学函数
decimal --- 十进制定点和浮点运算
fractions --- 分数
【python扩展函数库 python扩展库扩展名】random --- 生成伪随机数
statistics --- 数学统计函数
函数式编程模块
itertools --- 为高效循环而创建迭代器的函数
functools --- 高阶函数和可调用对象上的操作
operator --- 标准运算符替代函数
文件和目录访问
pathlib --- 面向对象的文件系统路径
os.path --- 常用路径操作
fileinput --- 迭代来自多个输入流的行
stat --- 解析 stat() 结果
filecmp --- 文件及目录的比较
tempfile --- 生成临时文件和目录
glob --- Unix 风格路径名模式扩展
fnmatch --- Unix 文件名模式匹配
linecache --- 随机读写文本行

推荐阅读