go语言支持m芯片么 go语言可以开发安卓吗( 三 )


GoAgent探针支持六大功能,实现全链路追踪
(十一)golang 内存分析编写过C语言程序的肯定知道通过malloc()方法动态申请内存,其中内存分配器使用的是glibc提供的ptmalloc2 。除了glibc,业界比较出名的内存分配器有Google的tcmalloc和Facebook的jemalloc 。二者在避免内存碎片和性能上均比glic有比较大的优势,在多线程环境中效果更明显 。
Golang中也实现了内存分配器,原理与tcmalloc类似,简单的说就是维护一块大的全局内存,每个线程(Golang中为P)维护一块小的私有内存,私有内存不足再从全局申请 。另外,内存分配与GC(垃圾回收)关系密切,所以了解GC前有必要了解内存分配的原理 。
为了方便自主管理内存,做法便是先向系统申请一块内存 , 然后将内存切割成小块,通过一定的内存分配算法管理内存 。以64位系统为例,Golang程序启动时会向系统申请的内存如下图所示:
预申请的内存划分为spans、bitmap、arena三部分 。其中arena即为所谓的堆区 , 应用中需要的内存从这里分配 。其中spans和bitmap是为了管理arena区而存在的 。
arena的大小为512G,为了方便管理把arena区域划分成一个个的page,每个page为8KB,一共有512GB/8KB个页;
spans区域存放span的指针,每个指针对应一个page,所以span区域的大小为(512GB/8KB)乘以指针大小8byte = 512M
bitmap区域大小也是通过arena计算出来,不过主要用于GC 。
span是用于管理arena页的关键数据结构,每个span中包含1个或多个连续页,为了满足小对象分配,span中的一页会划分更小的粒度,而对于大对象比如超过页大?。?则通过多页实现 。
根据对象大小,划分了一系列class,每个class都代表一个固定大小的对象 , 以及每个span的大小 。如下表所示:
上表中每列含义如下:
class: class ID , 每个span结构中都有一个class ID, 表示该span可处理的对象类型
bytes/obj:该class代表对象的字节数
bytes/span:每个span占用堆的字节数 , 也即页数乘以页大小
objects: 每个span可分配的对象个数,也即(bytes/spans)/(bytes/obj)waste
bytes: 每个span产生的内存碎片,也即(bytes/spans)%(bytes/obj)上表可见最大的对象是32K大小,超过32K大小的由特殊的class表示,该class ID为0,每个class只包含一个对象 。
span是内存管理的基本单位,每个span用于管理特定的class对象, 跟据对象大小,span将一个或多个页拆分成多个块进行管理 。src/runtime/mheap.go:mspan定义了其数据结构:
以class 10为例,span和管理的内存如下图所示:
spanclass为10,参照class表可得出npages=1,nelems=56,elemsize为144 。其中startAddr是在span初始化时就指定了某个页的地址 。allocBits指向一个位图,每位代表一个块是否被分配,本例中有两个块已经被分配,其allocCount也为2 。next和prev用于将多个span链接起来,这有利于管理多个span,接下来会进行说明 。
有了管理内存的基本单位span,还要有个数据结构来管理span,这个数据结构叫mcentral,各线程需要内存时从mcentral管理的span中申请内存,为了避免多线程申请内存时不断的加锁,Golang为每个线程分配了span的缓存,这个缓存即是cache 。src/runtime/mcache.go:mcache定义了cache的数据结构
alloc为mspan的指针数组 , 数组大小为class总数的2倍 。数组中每个元素代表了一种class类型的span列表,每种class类型都有两组span列表 , 第一组列表中所表示的对象中包含了指针,第二组列表中所表示的对象不含有指针,这么做是为了提高GC扫描性能,对于不包含指针的span列表,没必要去扫描 。根据对象是否包含指针,将对象分为noscan和scan两类,其中noscan代表没有指针,而scan则代表有指针,需要GC进行扫描 。mcache和span的对应关系如下图所示:

推荐阅读