python给函数作图 python画函数图像( 二 )


绘图区域与边界
R在绘图时,将显示区域划分为几个部分 。绘制区域显示了根据数据描绘出来的图像,在此区域内R根据数据选择一个坐标系,通过显示出来的坐标轴可以看到R使用的坐标系 。在绘制区域之外是边沿区,从底部开始按顺时针方向分别用数字1到4表示 。文字和标签通常显示在边沿区域内,按照从内到外的行数先后显示 。
添加对象
在绘制的图像上还可以继续添加若干对象,下面是几个有用的函数,以及对其功能的说明 。
?points(x, y, ...),添加点
?lines(x, y, ...),添加线段
?text(x, y, labels, ...) , 添加文字
?abline(a, b, ...),添加直线y=a+bx
?abline(h=y, ...) , 添加水平线
?abline(v=x, ...),添加垂直线
?polygon(x, y, ...),添加一个闭合的多边形
?segments(x0, y0, x1, y1, ...) , 画线段
?arrows(x0, y0, x1, y1, ...),画箭头
?symbols(x, y, ...),添加各种符号
?legend(x, y, legend, ...),添加图列说明
python函数图的绘制pre
importnumpy as np
【python给函数作图 python画函数图像】import matplotlib.pyplot as plt
frommatplotlib.patches import Polygon
def func(x):
return-(x-2)*(x-8)+40
x=np.linspace(0,10)
y=func(x)
fig,ax = plt.subplots()
plt.plot(x,y,'r',linewidth=2)
plt.ylim(ymin=20)
a=2
b=9
ax.set_xticks([a,b])
ax.set_xticklabels(['$a$','$b$'])
ax.set_yticks([])
plt.figtext(0.9,0.05,'$x$')
plt.figtext(0.1,0.9,'$y$')
ix=np.linspace(a,b)
iy=func(ix)
ixy=zip(ix,iy)
verts=[(a,0)]+list(ixy)+[(b,0)]
poly = Polygon(verts,facecolor='0.9',edgecolor='0.5')
ax.add_patch(poly)
x_math=(a+b)*0.5
y_math=35
plt.text(x_math,y_math,r"$\int_a^b(-(x-2)*(x-8)+40)dx$",horizontalalignment='center',size=12)
plt.show()
/pre
Python最小二乘法拟合与作图在函数拟合中,如果用p表示函数中需要确定的参数,那么目标就是找到一组p,使得下面函数S的值最?。?
这种算法称为最小二乘法拟合 。Python的Scipy数值计算库中的optimize模块提供了 leastsq() 函数,可以对数据进行最小二乘拟合计算 。
此处利用该函数对一段弧线使用圆方程进行了拟合,并通过Matplotlib模块进行了作图,程序内容如下:
Python的使用中需要导入相应的模块,此处首先用 import 语句
分别导入了numpy, leastsq与pylab模块 , 其中numpy模块常用用与数组类型的建立,读入等过程 。leastsq则为最小二乘法拟合函数 。pylab是绘图模块 。
接下来我们需要读入需要进行拟合的数据,这里使用了 numpy.loadtxt() 函数:
其参数有:
进行拟合时,首先我们需要定义一个目标函数 。对于圆的方程,我们需要圆心坐标(a,b)以及半径r三个参数,方便起见用p来存储:
紧接着就可以进行拟合了,leastsq() 函数需要至少提供拟合的函数名与参数的初始值:
返回的结果为一数组,分别为拟合得到的参数与其误差值等,这里只取拟合参数值 。
leastsq() 的参数具体有:
输出选项有:
最后我们可以将原数据与拟合结果一同做成线状图,可采用 pylab.plot() 函数:
pylab.plot() 函数需提供两列数组作为输入,其他参数可调控线条颜色,形状 , 粗细以及对应名称等性质 。视需求而定,此处不做详解 。
pylab.legend() 函数可以调控图像标签的位置,有无边框等性质 。
pylab.annotate() 函数设置注释,需至少提供注释内容与放置位置坐标的参数 。
pylab.show() 函数用于显示图像 。

推荐阅读