python中抽样函数 python随机抽取一个数( 三 )


面试官:还可以吧!正则化就是在目标函数后面加上了惩罚项 , 你也可以将后面的惩罚项理解为范数 。分类算法有很多,逻辑回归算法也是我们经常用到的算法 , 刚刚主要讨论的是决策树算法 , 现在我们简单聊一下不同分类算法之间的区别吧!讨论一下决策树算法和逻辑回归算法之间的区别?
小张:分为以下几个方面:第一 , 逻辑回归着眼于对整体数据的拟合,在整体结构上优于决策树;但是决策树采用分割的方法,深入到数据内部,对局部结构的分析是优于逻辑回归;第二,逻辑回归对线性问题把握较好,因此我们在建立分类算法的时候也是优先选择逻辑回归算法,决策树对非线性问题的把握较好;第三 , 从本质来考虑 , 决策树算法假设每一次决策边界都是和特征相互平行或垂直的,因此会将特征空间划分为矩形,因而决策树会产生复杂的方程式,这样会造成过拟合现象;逻辑回归只是一条平滑的边界曲线,不容易出现过拟合现象 。
面试官: 下面呢我们来聊一下模型的评估,算法进行模型评估的过程中,常用的一些指标都有哪些,精度?。空倩芈拾 。縍OC曲线?。空庑┲副甑木咛搴迨鞘裁矗?
小张:精度(precision),精确性的度量,表示标记为正例的元组占实际为正例的比例;召回率(recall) , 完全性的度量,表示为实际为正例的元组被正确标记的比例;ROC 曲线的横坐标为假阳性,纵坐标为真阳性,值越大,表示分类效果越好 。
(to be honest,这个问题第一次我跪了 , 虽然说是记忆一下肯定没问题,但是当时面试的那个时候大脑是一片空白)
面试官:聚类分析你懂得的吧!在我们一些分析中,它也是我们经常用到的一类算法,下面你介绍一下K-means算法吧!
小张:对于K-means算法,可以分为以下几个步骤:第一,从数据点中随机抽取K个数据点作为初始的聚类中心;第二:计算每个点到这K个中心点的距离,并把每个点分到距离其最近的中心中去;第三:求取各个类的均值,将这些均值作为新的类中心;第四:重复进行步骤二三过程,直至算法结束,算法结束有两种,一种是迭代的次数达到要求 , 一种是达到了某种精度 。
后记
面试的水很深 , 在数据分析技术面的时候问到的东西当然远远不止这些,因此在我们的脑子里面一定要形成一个完整的体系,无论是对某一门编程语言 , 还是对数据挖掘算法,在工作中都需要形成你的闭环,在面试中更是需要你形成闭环 , 如何更完美的包装自己,自己好好总结吧!
附录
R语言数据处理体系:数据简单预处理个人总结
1、数据简单查看
⑴查看数据的维度:dim
⑵查看数据的属性:colnames
⑶查看数据类型:str
注:有一些算法 , 比如说组合算法 , 要求分类变量为因子型变量;层次聚类,要求是一个距离矩阵,可以通过str函数进行查看
⑷查看前几行数据:head
注:可以初步观察数据是不是有量纲的差异 , 会后续的分析做准备
⑸查看因子型变量的占比情况:table/prop.table
注:可以为后续数据抽样做准备,看是否产生类不平衡的问题
2、数据缺失值处理
⑴summary函数进行简单的查看
⑵利用mice和VIM包查看数据缺失值情况,代表性函数: md.pattern、aggr
⑶caret包中的preProcess函数,可以进行缺失值的插补工作,有knn、袋装、中位数方法
⑷missForest包中的missForest函数,可以用随机森林的方法进行插补

推荐阅读