pythoniat函数 pythonany函数

python里setvalue()的用法Python是进行数据分析的一种出色语言,主要是因为以数据为中心的python软件包具有奇妙的生态系统 。Pandas是其中的一种,使导入和分析数据更加容易 。Pandasdataframe.set_value()函数将单个值放在传递的列和索引处 。它以轴标签为输入,并以标量值放置在 DataFrame 中的指定索引处 。替代此功能的是.at[]或者.iat[] 。用法:DataFrame.set_value(index, col, value, takeable=False)
python对csv年龄一列划分范围改python对csv年龄一列划分范围改
(1)单条件筛选
df[df[‘a’]30]
如果想筛选 a 列的取值大于 30 的记录, 但是之显示满足条件的 bpythoniat函数,c 列的值可以这么写
df’b’,’c’[df[‘a’]30]
使用 isin 函数根据特定值筛选记录 。筛选 a 值等于 30 或者 54 的记录
df[df.a.isin([30, 54])]
(2)多条件筛选
可以使用 (并)与 | (或)操作符或者特定的函数实现多条件筛选
使用筛选 a 列的取值大于 30pythoniat函数 , b 列的取值大于 40 的记录
df[(df[‘a’]30) (df[‘b’]40)]
(3)索引筛选
a. 切片操作
df[行索引pythoniat函数 , 列索引] 或 df列名 1 , 列名 2
#使用切片操作选择特定的行
df[1:4]
#传入列名选择特定的列
df’a’,’c’
b. loc 函数
当每列已有 column name 时 , 用 df [‘a’] 就能选取出一整列数据 。如果你知道 column names 和 index,且两者都很好输入,可以选择 .loc 同时进行行列选择 。
In [28]: df.loc[0,‘c’]
Out[28]: 4
In [29]: df.loc[1:4,[‘a’,‘c’]]
Out[29]:
a c
1 6 10
2 12 16
3 18 22
4 24 28
In [30]: df.loc[[1,3,5],[‘a’,‘c’]]
Out[30]:
a c
1 6 10
3 18 22
5 30 34
c. iloc 函数
如果 column name 太长 , 输入不方便,或者 index 是一列时间序列,更不好输入 , 那就可以选择 .iloc pythoniat函数了,该方法接受列名的 index,iloc 使得pythoniat函数我们可以对 column 使用 slice(切片)的方法对数据进行选取 。这边的 i 我觉得代表 index,比较好记点 。
In [35]: df.iloc[0,2]
Out[35]: 4
In [34]: df.iloc[1:4,[0,2]]
Out[34]:
a c
1 6 10
2 12 16
3 18 22
In [36]: df.iloc[[1,3,5],[0,2]]
Out[36]:
a c
1 6 10
3 18 22
5 30 34
In [38]: df.iloc[[1,3,5],0:2]
Out[38]:
a b
1 6 8
3 18 20
5 30 32
d. ix 函数
ix 的功能更加强大 , 参数既可以是索引,也可以是名称,相当于,loc 和 iloc 的合体 。需要注意的是在使用的时候需要统一 , 在行选择时同时出现索引和名称, 同样在同行选择时同时出现索引和名称 。
df.ix[1:3,[‘a’,‘b’]]
Out[41]:
a b
1 6 8
2 12 14
3 18 20
In [42]: df.ix[[1,3,5],[‘a’,‘b’]]
Out[42]:
a b
1 6 8
3 18 20
5 30 32
In [45]: df.ix[[1,3,5],[0,2]]
Out[45]:
a c
1 6 10
3 18 22
5 30 34
e. at 函数
根据指定行 index 及列 label,快速定位 DataFrame 的元素,选择列时仅支持列名 。
In [46]: df.at[3,‘a’]
Out[46]: 18
f. iat 函数
与 at 的功能相同,只使用索引参数
In [49]: df.iat[3,0]
Out[49]: 18
python筛选csv数据年龄在1-100的范围内
?
?
点赞文章给优秀博主打call~
便携平板价格
精选推荐
?广告
?
请教python高手?题主pythoniat函数你好,
pandas在使用read_excel读取excel时, read_excel函数有一个dtype参数, 可以设置读取列的类型, 举例来说:

推荐阅读