python转灰度图函数 python灰度图转换成二值图像( 三 )


对于多通道图像,有时候在处理时希望能够分别对每个通道处理,处理完成后重新合成多通道,在Pillow中 , 很简单,如下:
r,g,b = im.split()
im = Image.merge("RGB", (r,g,b))
对于split( )函数,如果是单通道的,则返回其本身,否则,返回各个通道 。
6)几何变换
对图像进行几何变换是一种基本处理,在Pillow中包括resize( )和rotate( ) , 如用法如下:
out = im.resize((128,128))
out = im.rotate(45)# degree conter-clockwise
其中,resize( )函数的参数是一个新图像大小的元祖,而rotate( )则需要输入顺时针的旋转角度 。在Pillow中 , 对于一些常见的旋转作了专门的定义:
out = im.transpose(Image.FLIP_LEFT_RIGHT)
out = im.transpose(Image.FLIP_TOP_BOTTOM)
out = im.transpose(Image.ROTATE_90)
out = im.transpose(Image.ROTATE_180)
out = im.transpose(Image.ROTATE_270)
7)颜色空间变换
在处理图像时,根据需要进行颜色空间的转换,如将彩色转换为灰度:
cmyk = im.convert("CMYK")
gray = im.convert("L")
8)图像滤波
图像滤波在ImageFilter 模块中,在该模块中,预先定义了很多增强滤波器,可以通过filter( )函数使用 , 预定义滤波器包括:
BLUR、CONTOUR、DETAIL、EDGE_ENHANCE、EDGE_ENHANCE_MORE、EMBOSS、FIND_EDGES、SMOOTH、SMOOTH_MORE、SHARPEN 。其中BLUR就是均值滤波,CONTOUR找轮廓 , FIND_EDGES边缘检测,使用该模块时 , 需先导入,使用方法如下:
from PIL import ImageFilter
imgF = Image.open("E:/photoshop/lena.jpg")
outF = imgF.filter(ImageFilter.DETAIL)
conF = imgF.filter(ImageFilter.CONTOUR)
edgeF = imgF.filter(ImageFilter.FIND_EDGES)
imgF.show()
outF.show()
conF.show()
edgeF.show()
除此以外 , ImageFilter模块还包括一些扩展性强的滤波器:
class PIL.ImageFilter.GaussianBlur(radius=2)
python io. imread如何设置参数 , 使读取的图片为灰度图?方法一:在使用OpenCV读取图片的同时将图片转换为灰度图:
img = cv2.imread(imgfile, cv2.IMREAD_GRAYSCALE)
print("cv2.imread(imgfile, cv2.IMREAD_GRAYSCALE)结果如下:")
print('大?。簕}'.format(img.shape))
print("类型:%s"%type(img))
print(img)
运行结果如下图所示:
方法二:使用OpenCV,先读取图片 , 然后在转换为灰度图:
img = cv2.imread(imgfile)
#print(img.shape)
#print(img)
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #Y = 0.299R + 0.587G + 0.114B
print("cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)结果如下:")
print('大小:{}'.format(gray_img.shape))
print("类型:%s" % type(gray_img))
print(gray_img)
运行结果如下:
方法三:使用PIL库中的Image模块:
img = np.array(Image.open(imgfile).convert('L'), 'f') #读取图片,灰度化 , 转换为数组,L = 0.299R + 0.587G + 0.114B 。'f'为float类型
print("Image方法的结果如下:")
print('大?。簕}'.format(img.shape))
print("类型:%s" % type(img))
print(img)
关于python转灰度图函数和python灰度图转换成二值图像的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站 。

推荐阅读