密度函数python 密度函数公式( 三 )


运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集 。然后创建一个散点图,并由其指定的群集着色 。在这种情况下,会找到与标准 K-均值算法相当的结果 。
带有最小批次K均值聚类的聚类数据集的散点图
9.均值漂移聚类
均值漂移聚类涉及到根据特征空间中的实例密度来寻找和调整质心 。
它是通过 MeanShift 类实现的,主要配置是“带宽”超参数 。下面列出了完整的示例 。
运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集 。然后创建一个散点图,并由其指定的群集着色 。在这种情况下,可以在数据中找到一组合理的群集 。
具有均值漂移聚类的聚类数据集散点图
10.OPTICSOPTICS
聚类( OPTICS 短于订购点数以标识聚类结构)是上述 DBSCAN 的修改版本 。
它是通过 OPTICS 类实现的 , 主要配置是“ eps ”和“ min _ samples ”超参数 。下面列出了完整的示例 。
运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集 。然后创建一个散点图,并由其指定的群集着色 。在这种情况下 , 我无法在此数据集上获得合理的结果 。
使用OPTICS聚类确定具有聚类的数据集的散点图
11.光谱聚类
光谱聚类是一类通用的聚类方法,取自线性线性代数 。
它是通过 Spectral 聚类类实现的,而主要的 Spectral 聚类是一个由聚类方法组成的通用类,取自线性线性代数 。要优化的是“ n _ clusters ”超参数,用于指定数据中的估计群集数量 。下面列出了完整的示例 。
运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集 。然后创建一个散点图,并由其指定的群集着色 。在这种情况下,找到了合理的集群 。
使用光谱聚类聚类识别出具有聚类的数据集的散点图
12.高斯混合模型
高斯混合模型总结了一个多变量概率密度函数,顾名思义就是混合了高斯概率分布 。它是通过 Gaussian Mixture 类实现的,要优化的主要配置是“ n _ clusters ”超参数 , 用于指定数据中估计的群集数量 。下面列出了完整的示例 。
运行该示例符合训练数据集上的模型 , 并预测数据集中每个示例的群集 。然后创建一个散点图,并由其指定的群集着色 。在这种情况下,我们可以看到群集被完美地识别 。这并不奇怪,因为数据集是作为 Gaussian 的混合生成的 。
使用高斯混合聚类识别出具有聚类的数据集的散点图
在本文中,你发现了如何在 python 中安装和使用顶级聚类算法 。具体来说,你学到了:
如何在Python中实现这五类强大的概率分布Python – 伯乐在线
首页所有文章观点与动态基础知识系列教程实践项目工具与框架工具资源Python小组伯乐在线Python - 伯乐在线所有文章实践项目如何在Python中实现这五类强大的概率分布如何在Python中实现这五类强大的概率分布
2015/04/25 · 实践项目 · 概率分布
分享到: 12
本文由 伯乐在线 - feigao.me 翻译密度函数python,Daetalus 校稿 。未经许可,禁止转载!
英文出处: 。欢迎加入翻译组 。
R编程语言已经成为统计分析中的事实标准 。但在这篇文章中 , 密度函数python我将告诉你在Python中实现统计学概念会是如此容易 。我要使用Python实现一些离散和连续的概率分布 。虽然我不会讨论这些分布的数学细节 , 但我会以链接的方式给你一些学习这些统计学概念的好资料 。在讨论这些概率分布之前,我想简单说说什么是随机变量(random variable) 。随机变量是对一次试验结果的量化 。

推荐阅读