密度函数python 密度函数公式( 四 )


举个例子 , 一个表示抛硬币结果的随机变量可以表示成Python
X = {1 如果正面朝上,
2 如果反面朝上}
12X = {1 如果正面朝上,
2 如果反面朝上}
随机变量是一个变量,它取值于一组可能的值(离散或连续的),并服从某种随机性 。随机变量的每个可能取值的都与一个概率相关联 。随机变量的所有可能取值和与之相关联的概率就被称为概率分布(probability distributrion) 。
我鼓励大家仔细研究一下scipy.stats模块 。
概率分布有两种类型:离散(discrete)概率分布和连续(continuous)概率分布 。
离散概率分布也称为概率质量函数(probability mass function) 。离散概率分布的例子有伯努利分布(Bernoulli distribution)、二项分布(binomial distribution)、泊松分布(Poisson distribution)和几何分布(geometric distribution)等 。
连续概率分布也称为概率密度函数(probability density function) , 它们是具有连续取值(例如一条实线上的值)的函数 。正态分布(normal distribution)、指数分布(exponential distribution)和β分布(beta distribution)等都属于连续概率分布 。
若想了解更多关于离散和连续随机变量的知识,你可以观看可汗学院关于概率分布的视频 。
二项分布(Binomial Distribution)
服从二项分布的随机变量X表示在n个独立的是/非试验中成功的次数,其中每次试验的成功概率为p 。
E(X) = np, Var(X) = np(1?p)
如果你想知道每个函数的原理,你可以在IPython笔记本中使用help file命令 。E(X)表示分布的期望或平均值 。
键入stats.binom?了解二项分布函数binom的更多信息 。
二项分布的例子:抛掷10次硬币,恰好两次正面朝上的概率是多少密度函数python?
假设在该试验中正面朝上的概率为0.3,这意味着平均来说,我们可以期待有3次是硬币正面朝上的 。我定义掷硬币的所有可能结果为k = np.arange(0,11):你可能观测到0次正面朝上、1次正面朝上 , 一直到10次正面朝上 。我使用stats.binom.pmf计算每次观测的概率质量函数 。它返回一个含有11个元素的列表(list),这些元素表示与每个观测相关联的概率值 。
您可以使用.rvs函数模拟一个二项随机变量 , 其中参数size指定你要进行模拟的次数 。我让Python返回10000个参数为n和p的二项式随机变量 。我将输出这些随机变量的平均值和标准差,然后画出所有的随机变量的直方图 。
泊松分布(Poisson Distribution)
一个服从泊松分布的随机变量X,表示在具有比率参数(rate parameter)λ的一段固定时间间隔内,事件发生的次数 。参数λ告诉你该事件发生的比率 。随机变量X的平均值和方差都是λ 。
E(X) = λ, Var(X) = λ
泊松分布的例子:已知某路口发生事故的比率是每天2次,那么在此处一天内发生4次事故的概率是多少密度函数python?
让我们考虑这个平均每天发生2起事故的例子 。泊松分布的实现和二项分布有些类似,在泊松分布中我们需要指定比率参数 。泊松分布的输出是一个数列 , 包含了发生0次、1次、2次,直到10次事故的概率 。我用结果生成了以下图片 。
你可以看到,事故次数的峰值在均值附近 。平均来说,你可以预计事件发生的次数为λ 。尝试不同的λ和n的值,然后看看分布的形状是怎么变化的 。
现在我来模拟1000个服从泊松分布的随机变量 。
正态分布(Normal Distribution)
正态分布是一种连续分布 , 其函数可以在实线上的任何地方取值 。正态分布由两个参数描述:分布的平均值μ和方差σ2。

推荐阅读