python绘制激活函数 python 激活窗口 输入

如何用python激活指定窗口的输入框,方便下一步模拟输出可以使用StringVar()对象来完成,把Entry的textvariable属性设置为StringVar(),再通过StringVar()的get()和set()函数可以读取和输出相应内容,以下为测试代码(python3.x):
from tkinter import *
def submit():
print(u.get())
p.set(u.get())
root = Tk()
root.title("测试")
frame = Frame(root)
frame.pack(padx=8, pady=8, ipadx=4)
lab1 = Label(frame, text="获取:")
lab1.grid(row=0, column=0, padx=5, pady=5, sticky=W)
#绑定对象到Entry
【python绘制激活函数 python 激活窗口 输入】u = StringVar()
ent1 = Entry(frame, textvariable=u)
ent1.grid(row=0, column=1, sticky='ew', columnspan=2)
lab2 = Label(frame, text="显示:")
lab2.grid(row=1, column=0, padx=5, pady=5, sticky=W)
p = StringVar()
ent2 = Entry(frame, textvariable=p)
ent2.grid(row=1, column=1, sticky='ew', columnspan=2)
button = Button(frame, text="登录", command=submit, default='active')
button.grid(row=2, column=1)
lab3 = Label(frame, text="")
lab3.grid(row=2, column=0, sticky=W)
button2 = Button(frame, text="退出", command=quit)
button2.grid(row=2, column=2, padx=5, pady=5)
#以下代码居中显示窗口
root.update_idletasks()
x = (root.winfo_screenwidth() - root.winfo_reqwidth()) / 2
y = (root.winfo_screenheight() - root.winfo_reqheight()) / 2
root.geometry("+%d+%d" % (x, y))
root.mainloop()
效果如下:
原来ReLU这么好用!一文带你深度了解ReLU激活函数! 在神经网络中python绘制激活函数,激活函数负责将来自节点的加权输入转换为该输入的节点或输出的激活 。ReLU 是一个分段线性函数 , 如果输入为正,它将直接输出,否则,它将输出为零 。它已经成为许多类型神经网络的默认激活函数,因为使用它的模型更容易训练,并且通常能够获得更好的性能 。在本文中 , 我们来详细介绍一下ReLU , 主要分成以下几个部分:
1、Sigmoid 和 Tanh 激活函数的局限性
2、ReLU(Rectified Linear Activation Function)
3、如何实现ReLU
4、ReLU的优点
5、使用ReLU的技巧
一个神经网络由层节点组成,并学习将输入的样本映射到输出 。对于给定的节点,将输入乘以节点中的权重,并将其相加 。此值称为节点的summed activation 。然后,经过求和的激活通过一个激活函数转换并定义特定的输出或节点的“activation” 。
最简单的激活函数被称为线性激活,其中根本没有应用任何转换 。一个仅由线性激活函数组成的网络很容易训练,但不能学习复杂的映射函数 。线性激活函数仍然用于预测一个数量的网络的输出层(例如回归问题) 。
非线性激活函数是更好的,因为它们允许节点在数据中学习更复杂的结构。两个广泛使用的非线性激活函数是 sigmoid函数和 双曲正切激活函数 。
Sigmoid 激活函数 , 也被称为 Logistic函数神经网络,传统上是一个非常受欢迎的神经网络激活函数 。函数的输入被转换成介于0.0和1.0之间的值 。大于1.0的输入被转换为值1.0 , 同样 , 小于0.0的值被折断为0.0 。所有可能的输入函数的形状都是从0到0.5到1.0的 s 形 。在很长一段时间里 , 直到20世纪90年代早期,这是神经网络的默认激活方式 。
双曲正切函数,简称 tanh,是一个形状类似的非线性激活函数 , 输出值介于-1.0和1.0之间 。在20世纪90年代后期和21世纪初期,由于使用 tanh 函数的模型更容易训练 , 而且往往具有更好的预测性能,因此 tanh 函数比 Sigmoid激活函数更受青睐 。

推荐阅读