python中的插值函数 python插值与拟合( 二 )


x1 = int(temp_x)
【python中的插值函数 python插值与拟合】y1 = int(temp_y)
x2 = x1
y2 = y1 + 1
x3 = x1 + 1
y3 = y1
x4 = x1 + 1
y4 = y1 + 1
u = temp_x - x1
v = temp_y - y1
# 防止越界
if x4 = input_row:
x4 = input_row - 1
x2 = x4
x1 = x4 - 1
x3 = x4 - 1
if y4 = input_col:
y4 = input_col - 1
y3 = y4
y1 = y4 - 1
y2 = y4 - 1
# 插值
output_signal[i, j] = (1-u)*(1-v)*int(input_signal_cp[x1, y1]) + (1-u)*v*int(input_signal_cp[x2, y2]) + u*(1-v)*int(input_signal_cp[x3, y3]) + u*v*int(input_signal_cp[x4, y4])
return output_signal
# Read image
img = cv2.imread("../paojie_g.jpg",0).astype(np.float)
out = double_linear(img,2).astype(np.uint8)
# Save result
cv2.imshow("result", out)
cv2.imwrite("out.jpg", out)
cv2.waitKey(0)
cv2.destroyAllWindows()
三. 灰度图像双线性插值实验结果:
四. 彩色图像双线性插值python实现
def BiLinear_interpolation(img,dstH,dstW):
scrH,scrW,_=img.shape
img=np.pad(img,((0,1),(0,1),(0,0)),'constant')
retimg=np.zeros((dstH,dstW,3),dtype=np.uint8)
for i in range(dstH-1):
for j in range(dstW-1):
scrx=(i+1)*(scrH/dstH)
scry=(j+1)*(scrW/dstW)
x=math.floor(scrx)
y=math.floor(scry)
u=scrx-x
v=scry-y
retimg[i,j]=(1-u)*(1-v)*img[x,y]+u*(1-v)*img[x+1,y]+(1-u)*v*img[x,y+1]+u*v*img[x+1,y+1]
return retimg
im_path='../paojie.jpg'
image=np.array(Image.open(im_path))
image2=BiLinear_interpolation(image,image.shape[0]*2,image.shape[1]*2)
image2=Image.fromarray(image2.astype('uint8')).convert('RGB')
image2.save('3.png')
五. 彩色图像双线性插值实验结果:
六. 最近邻插值算法和双三次插值算法可参考:
① 最近邻插值算法:
② 双三次插值算法:
七. 参考内容:

详解Python实现线性插值法在算法分析过程中 , 我们经常会遇到数据需要处理插值的过程 , 为了方便理解,我们这里给出相关概念和源程序,希望能帮助到您!
已知坐标 (x0, y0) 与 (x1, y1),要求得区间 [x0, x1] 内某一点位置 x 在直线上的y值 。两点间直线方程,我们有
那么,如何实现它呢?
依据数值分析,我们可以发现存在递归情况
执行结果;
此外,我们也可以对一维线性插值使用指定得库:numpy.interp
将一维分段线性插值返回给具有给定离散数据点(xp , fp)的函数,该函数在x处求值
检查: 如果xp没有增加,则结果是无意义的 。
另一方面:线性插值是一种使用线性多项式进行曲线拟合的方法,可以在一组离散的已知数据点范围内构造新的数据点 。
实际上,这可能意味着您可以推断已知位置点之间的新的估计位置点,以创建更高频率的数据或填写缺失值 。
以最简单的形式,可视化以下图像:
在此,已知数据点在位置(1,1)和(3,3)处为红色 。使用线性迭代,我们可以在它们之间添加一个点 , 该点可以显示为蓝色 。
这是一个非常简单的问题 , 如果我们拥有更多已知的数据点,并且想要特定频率的插值点又该怎么办呢?
这可以使用numpy包中的两个函数在Python中非常简单地实现:
我们有十个已知点,但是假设我们要一个50个序列 。
我们可以使用np.linspace做到这一点;序列的起点,序列的终点以及我们想要的数据点总数
起点和终点将与您的初始x值的起点和终点相同,因此在此我们指定0和2 * pi 。我们还指定了对序列中50个数据点的请求
现在,进行线性插值!使用np.interp,我们传递所需数据点的列表(我们在上面创建的50个),然后传递原始的x和y值

推荐阅读