怎么去看懂mysql的执行计划MySQL 使用 EXPLAIN 后面跟SQL,就直接显示查询计划 下面是一个例子: mysql EXPLAIN - SELECT - SALE_DATE, - SUM(SALE_MONEY) AS SUM_MONEY - FROM - SALE_REPORT - GROUP BY - SALE_DATE - ORDER BY - SUM(SALE_MONEY) DESC;
Mysql执行计划功能详解 在Mysql调优过程中其中最关键mysql怎么看执行计划的一点mysql怎么看执行计划,就是正确使用执行计划,从而查看SQL语句mysql怎么看执行计划的具体执行过程和参数指标,来具体场景具体分析,来达到优化SQL语句的执行效率的效果
id
select查询的序列号,包含一组数字,表示查询中执行select子句或者操作表的顺序
1、如果id相同,那么执行顺序从上到下
2、如果id不同,如果是子查询,id的序号会递增,id值越大优先级越高,越先被执行
3、id相同和不同的 , 同时存在:相同的可以认为是一组,从上往下顺序执行,在所有组中 , id值越大,优先级越高,越先执行
select_type
主要用来分辨查询的类型,是普通查询还是联合查询还是子查询
table
对应行正在访问哪张表,表名或者别名,可能是临时表或者union合并结果集
1、如果是具体的表名,则表明从实际的物理表中获取数据 , 当然也可以是表的别名
2、表名是derivedN的形式,表示使用了id为N的查询产生的衍生表
3、当有union result的时候 , 表名是union n1,n2等的形式,n1,n2表示参与union的id
type
type显示的是访问类型,访问类型表示mysql怎么看执行计划我是以何种方式去访问mysql怎么看执行计划我们的数据 , 最容易想的是全表扫描,直接暴力的遍历一张表去寻找需要的数据,效率非常低下,访问的类型有很多,效率从最好到最坏依次是:
systemconsteq_refreffulltextref_or_nullindex_merge
unique_subqueryindex_subqueryrangeindexALL
possible_keys
显示可能应用在这张表中的索引,一个或多个,查询涉及到的字段上若存在索引,则该索引将被列出,但不一定被查询实际使用
key
实际使用的索引,如果为null,则没有使用索引,查询中若使用了覆盖索引 , 则该索引和查询的select字段重叠 。
key_len
表示索引中使用的字节数 , 可以通过key_len计算查询中使用的索引长度 , 在不损失精度的情况下长度越短越好 。
ref
显示索引的哪一列被使用了,如果可能的话 , 是一个常数
rows
根据表的统计信息及索引使用情况,大致估算出找出所需记录需要读取的行数,此参数很重要,直接反应的sql找了多少数据,在完成目的的情况下越少越好
extra
SQL包含额外的信息
mysql中如何查看优化器优化后的执行计划在开始演示之前mysql怎么看执行计划,mysql怎么看执行计划我们先介绍下两个概念 。
概念一,数据的可选择性基数,也就是常说的cardinality值 。
查询优化器在生成各种执行计划之前,得先从统计信息中取得相关数据,这样才能估算每步操作所涉及到的记录数 , 而这个相关数据就是cardinality 。简单来说,就是每个值在每个字段中的唯一值分布状态 。
比如表t1有100行记录,其中一列为f1 。f1中唯一值的个数可以是100个,也可以是1个 , 当然也可以是1到100之间的任何一个数字 。这里唯一值越的多少 , 就是这个列的可选择基数 。
那看到这里我们就明白了,为什么要在基数高的字段上建立索引,而基数低的的字段建立索引反而没有全表扫描来的快 。当然这个只是一方面,至于更深入的探讨就不在我这篇探讨的范围了 。
概念二,关于HINT的使用 。
这里我来说下HINT是什么 , 在什么时候用 。
HINT简单来说就是在某些特定的场景下人工协助MySQL优化器的工作 , 使她生成最优的执行计划 。一般来说,优化器的执行计划都是最优化的,不过在某些特定场景下,执行计划可能不是最优化 。
比如mysql怎么看执行计划:表t1经过大量的频繁更新操作,(UPDATE,DELETE,INSERT) , cardinality已经很不准确了 , 这时候刚好执行了一条SQL , 那么有可能这条SQL的执行计划就不是最优的 。为什么说有可能呢mysql怎么看执行计划?
来看下具体演示
譬如,以下两条SQL,
A:
select * from t1 where f1 = 20;
B:
select * from t1 where f1 = 30;
如果f1的值刚好频繁更新的值为30 , 并且没有达到MySQL自动更新cardinality值的临界值或者说用户设置了手动更新又或者用户减少了sample page等等 , 那么对这两条语句来说,可能不准确的就是B了 。
这里顺带说下 , MySQL提供了自动更新和手动更新表cardinality值的方法,因篇幅有限,需要的可以查阅手册 。
那回到正题上,MySQL 8.0 带来了几个HINT , 我今天就举个index_merge的例子 。
示例表结构:
mysql desc t1; ------------ -------------- ------ ----- --------- ---------------- | Field| Type| Null | Key | Default | Extra| ------------ -------------- ------ ----- --------- ---------------- | id| int(11)| NO| PRI | NULL| auto_increment || rank1| int(11)| YES| MUL | NULL||| rank2| int(11)| YES| MUL | NULL||| log_time| datetime| YES| MUL | NULL||| prefix_uid | varchar(100) | YES|| NULL||| desc1| text| YES|| NULL||| rank3| int(11)| YES| MUL | NULL|| ------------ -------------- ------ ----- --------- ---------------- 7 rows in set (0.00 sec)
表记录数:
mysql select count(*) from t1; ---------- | count(*) | ---------- |32768 | ---------- 1 row in set (0.01 sec)
这里我们两条经典的SQL:
SQL C:
select * from t1 where rank1 = 1 or rank2 = 2 or rank3 = 2;
SQL D:
select * from t1 where rank1 =100and rank2 =100and rank3 =100;
表t1实际上在rank1,rank2,rank3三列上分别有一个二级索引 。
那我们来看SQL C的查询计划 。
显然,没有用到任何索引,扫描的行数为32034,cost为3243.65 。
mysql explainformat=json select * from t1where rank1 =1 or rank2 = 2 or rank3 = 2\G*************************** 1. row ***************************EXPLAIN: {"query_block": {"select_id": 1,"cost_info": {"query_cost": "3243.65"},"table": {"table_name": "t1","access_type": "ALL","possible_keys": ["idx_rank1","idx_rank2","idx_rank3"],"rows_examined_per_scan": 32034,"rows_produced_per_join": 115,"filtered": "0.36","cost_info": {"read_cost": "3232.07","eval_cost": "11.58","prefix_cost": "3243.65","data_read_per_join": "49K"},"used_columns": ["id","rank1","rank2","log_time","prefix_uid","desc1","rank3"],"attached_condition": "((`ytt`.`t1`.`rank1` = 1) or (`ytt`.`t1`.`rank2` = 2) or (`ytt`.`t1`.`rank3` = 2))"}}}1 row in set, 1 warning (0.00 sec)
我们加上hint给相同的查询,再次看看查询计划 。
这个时候用到了index_merge,union了三个列 。扫描的行数为1103 , cost为441.09 , 明显比之前的快了好几倍 。
mysql explainformat=json select /*index_merge(t1) */ * from t1where rank1 =1 or rank2 = 2 or rank3 = 2\G*************************** 1. row ***************************EXPLAIN: {"query_block": {"select_id": 1,"cost_info": {"query_cost": "441.09"},"table": {"table_name": "t1","access_type": "index_merge","possible_keys": ["idx_rank1","idx_rank2","idx_rank3"],"key": "union(idx_rank1,idx_rank2,idx_rank3)","key_length": "5,5,5","rows_examined_per_scan": 1103,"rows_produced_per_join": 1103,"filtered": "100.00","cost_info": {"read_cost": "330.79","eval_cost": "110.30","prefix_cost": "441.09","data_read_per_join": "473K"},"used_columns": ["id","rank1","rank2","log_time","prefix_uid","desc1","rank3"],"attached_condition": "((`ytt`.`t1`.`rank1` = 1) or (`ytt`.`t1`.`rank2` = 2) or (`ytt`.`t1`.`rank3` = 2))"}}}1 row in set, 1 warning (0.00 sec)
我们再看下SQL D的计划:
不加HINT,
mysql explain format=json select * from t1 where rank1 =100 and rank2 =100 and rank3 =100\G*************************** 1. row ***************************EXPLAIN: {"query_block": {"select_id": 1,"cost_info": {"query_cost": "534.34"},"table": {"table_name": "t1","access_type": "ref","possible_keys": ["idx_rank1","idx_rank2","idx_rank3"],"key": "idx_rank1","used_key_parts": ["rank1"],"key_length": "5","ref": ["const"],"rows_examined_per_scan": 555,"rows_produced_per_join": 0,"filtered": "0.07","cost_info": {"read_cost": "478.84","eval_cost": "0.04","prefix_cost": "534.34","data_read_per_join": "176"},"used_columns": ["id","rank1","rank2","log_time","prefix_uid","desc1","rank3"],"attached_condition": "((`ytt`.`t1`.`rank3` = 100) and (`ytt`.`t1`.`rank2` = 100))"}}}1 row in set, 1 warning (0.00 sec)
加了HINT,
mysql explain format=json select /*index_merge(t1)*/ * from t1 where rank1 =100 and rank2 =100 and rank3 =100\G*************************** 1. row ***************************EXPLAIN: {"query_block": {"select_id": 1,"cost_info": {"query_cost": "5.23"},"table": {"table_name": "t1","access_type": "index_merge","possible_keys": ["idx_rank1","idx_rank2","idx_rank3"],"key": "intersect(idx_rank1,idx_rank2,idx_rank3)","key_length": "5,5,5","rows_examined_per_scan": 1,"rows_produced_per_join": 1,"filtered": "100.00","cost_info": {"read_cost": "5.13","eval_cost": "0.10","prefix_cost": "5.23","data_read_per_join": "440"},"used_columns": ["id","rank1","rank2","log_time","prefix_uid","desc1","rank3"],"attached_condition": "((`ytt`.`t1`.`rank3` = 100) and (`ytt`.`t1`.`rank2` = 100) and (`ytt`.`t1`.`rank1` = 100))"}}}1 row in set, 1 warning (0.00 sec)
对比下以上两个,加了HINT的比不加HINT的cost小了100倍 。
总结下,就是说表的cardinality值影响这张的查询计划,如果这个值没有正常更新的话 , 就需要手工加HINT了 。相信MySQL未来的版本会带来更多的HINT 。
Mysql学会查看sql的执行计划首先在Mysql的服务中有 连接器、查询缓存(Mysql8 已经删除)、分析器、优化器、执行器等mysql怎么看执行计划,所有跨存储引擎的功能都在这一层实现
而一条sql怎么执行是由优化器决定的, 优化器是在表里面有多个索引的时候,决定使用哪个索引mysql怎么看执行计划;或者在一个语句有多表关联(join)的时候,决定各个表的连接顺序 。
而执行计划就是优化器优化后的sql的执行的详细方案
Mysql中查看执行计划的方式有两种 : 1. 使用desc2.使用 explain使用它俩的效果是一样的
接下来要通过执行计划知道sql是怎么执行的
执行计划中有几个重要的字段, 分别是
id,table,type,possible_keys,key,key_len, Extra
id :可以通过ID来查看在多表联查中sql是先查询哪张表的 id相同的从上往下依次执行,id不同的id大的先执行
table:table当然就是查询的表名
type :查询的类型查询类型分为ALL,index,range,ref , eq_ref, const(system),null
ALL: 指的全盘扫描,没有走任何索引查询结果集大于25% 优化器可能会走全盘扫描字符串查询的时候一定要加"" 不然可能会全索引扫描(隐式转换)统计信息 失效 或者 过旧 也可能走全盘扫描因为优化器会参考统计信息来制定执行计划
index: 全索引扫描就是扫描整颗索引树
range: 索引范围查询索引树的一部分范围范围索引中==like的效率会比orin的效率高, 使用like %再前面的不走索引
ref:辅助索引的等值查询
当查询的数据量小,优化器也有可能会走索引的全盘扫描这里我就不贴图mysql怎么看执行计划了;
eq_ref : 多表连接查询中,被连接的表的连接条件列是主键或者唯一键
const(system): 主键 或者 唯一键 的等值查询
null: 没有数据
mysql怎么看执行计划他们的性能是依次递增的 全盘扫描性能最差,const性能最高
possible_keys:查询过程中可能用到的索引
key: 真正使用到的索引
key_len:走索引的长度
这个是怎么计算的呢?
key_len 的计算方法 :
int 类型最长存储4个字节长度的数字有not null是4字节没有的话会花1字节存储是不是null
tinyint 最大存储一个字节也会花1字节来判断是不是null
字符串类型 : 字符集 utf8mb41-4字节
varchar超过255会预留2个字节存储长度 没超预留1个字节
key_len 永远是你设置的长度的最大的
联合索引可以通过key_len 来判断走了几个索引
使用desc format=json select * from table 可以查看详细情况
filtered:索引扫描过滤掉数据的占比
Extra: 额外的信息
Using filesort :MySQL 对数据在sql层进行了排序,而不是按照表内的索引进行排序读 取 。效率比较低
Using temporary :使用临时表保存中间结果 , 也就是说 MySQL 在对查询结果排序时使用了临时表,常见于order by 或 group by 。
Using index :表示 SQL 操作中使用了覆盖索引(Covering Index),避免了访问表的数据行,效率高 。
Using index condition :表示 SQL 操作命中了索引,但不是所有的列数据都在索引树上,还需要访问实际的行记录 。
Using where :表示 SQL 操作使用了 where 过滤条件 。
Select tables optimized away :基于索引优化 MIN/MAX 操作或者 MyISAM 存储引擎优化 COUNT(*) 操作 , 不必等到执行阶段再进行计算,查询执行计划生成的阶段即可完成优化 。
Using join buffer (Block Nested Loop) :表示 SQL 操作使用了关联查询或者子查询 , 且需要进行嵌套循环计算
mysql执行计划怎么看MySQL 使用 EXPLAIN 后面跟SQL,就直接显示查询计划 下面是一个例子: mysql EXPLAIN - SELECT - SALE_DATE, - SUM(SALE_MONEY) AS SUM_MONEY - FROM - SALE_REPORT - GROUP BY - SALE_DATE - ORDER BY - SUM(SALE_MONEY) DESC;
【mysql怎么看执行计划 mysql查看执行效率】关于mysql怎么看执行计划和mysql查看执行效率的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站 。
推荐阅读
- 抖音直播伴侣电脑下载链接,抖音直播伴侣电脑下载链接怎么打开
- 联想怎么看显卡驱动,联想怎么看显卡驱动版本
- 南通百通app下载,南通百通app下载苏康码
- 直播伴侣启动太慢,直播伴侣启动太慢怎么解决
- go语言和julia Go语言和php哪个更加实用
- 为什么明星好多搞淘宝直播,为什么演员都去淘宝直播
- 为什么电脑没反应,为什么电脑没反应了
- 直播伴侣用什么手提电脑好,直播伴侣需要什么样的电脑
- linuxcp命令格式 linuxcp命令的用法