Php更新脚本百万数据 php更新脚本百万数据怎么弄

PHP中如何更新大量的mysql数据sql= "UPDATE mydata SET p1='".$pointarr[i][1]."' where ps like '%".$pointarr[i][
每次都去做一次like的全表扫描当然慢了 。
建议使用批量更新,减少查询次数 。
比如先查询出结果集,然后在内存里去操作字段更新
最后采用 update ...... where id = xxx 这样的更新方法 。避免多次全表扫描 。
不是最了解你的需求 , 仅供参考 。
PHP效率问题,上万条数据一次性取出?还是分开取出处理?显示数据还是更新(update)数据,都是先处理一部分数据,完成后再处理下一步数据 更有效率 。
显示数据取出部分数据的方法最常用的是分页方式,分页是仅读取前面的几十页信息,读取数据库是很快的,可以比较一下10条和100条的显示速度,差很远 。
更新(update)数据也不能一次性处理大量数据,那样经常会出现页面死定的情况,可以设置更新一定数据后跳转到下一步再更新一定数据,大多数cms更新数据都是采用这种方式 。
无需显示直接读取表内所有数据生成HTML页面时,不论是取出全部数据直接生成有效率 , 还是一次取出一部分 , 分别处理有效率 。
php 处理上百万条的数据库如何提高处理查询速度1.对查询进行优化Php更新脚本百万数据,应尽量避免全表扫描 , 首先应考虑在 where 及 order by 涉及Php更新脚本百万数据的列上建立索引 。
2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num is null
可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:
select id from t where num=0
3.应尽量避免在 where 子句中使用!=或操作符,否则将引擎放弃使用索引而进行全表扫描 。
4.应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num=10 or num=20
可以这样查询:
select id from t where num=10
union all
select id from t where num=20
5.in 和 not in 也要慎用,否则会导致全表扫描,如:
select id from t where num in(1,2,3)
对于连续的数值 , 能用 between 就不要用 in 了:
select id from t where num between 1 and 3
6.下面的查询也将导致全表扫描:
select id from t where name like '玞%'
若要提高效率,可以考虑全文检索 。
7.如果在 where 子句中使用参数,也会导致全表扫描 。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择 。然而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项 。如下面语句将进行全表扫描:
select id from t where num=@num
可以改为强制查询使用索引:
select id from t with(index(索引名)) where num=@num
8.应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描 。如:
select id from t where num/2=100
应改为:
select id from t where num=100*2
9.应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描 。如:
select id from t where substring(name,1,3)='abc'--name以abc开头的id
select id from t where datediff(day,createdate,'2005-11-30')=0--‘2005-11-30'生成的id
应改为:
select id from t where name like 'abc%'
select id from t where createdate='2005-11-30' and createdate'2005-12-1'
10.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引 。
11.在使用索引字段作为条件时,如果该索引是复合索引 , 那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致 。
12.不要写一些没有意义的查询,如需要生成一个空表结构:
select col1,col2 into #t from t where 1=0
这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:
create table #t(...)
13.很多时候用 exists 代替 in 是一个好的选择:
select num from a where num in(select num from b)
用下面的语句替换:
select num from a where exists(select 1 from b where num=a.num)
14.并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段sex , male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用 。
15.索引并不是越多越好,索引固然可以提高相应的 select 的效率 , 但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定 。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要 。
16.应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整 , 会耗费相当大的资源 。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引 。
17.尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型 , 这会降低查询和连接的性能,并会增加存储开销 。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了 。
18.尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些 。
19.任何地方都不要使用 select * from t,用具体的字段列表代替“*”,不要返回用不到的任何字段 。
20.尽量使用表变量来代替临时表 。如果表变量包含大量数据 , 请注意索引非常有限(只有主键索引) 。
21.避免频繁创建和删除临时表,以减少系统表资源的消耗 。
22.临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时 。但是,对于一次性事件 , 最好使用导出表 。
23.在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert 。
24.如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table,然后 drop table ,这样可以避免系统表的较长时间锁定 。
25.尽量避免使用游标 , 因为游标的效率较差,如果游标操作的数据超过1万行 , 那么就应该考虑改写 。
26.使用基于游标的方法或临时表方法之前 , 应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效 。
27.与临时表一样 , 游标并不是不可使用 。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时 。在结果集中包括“合计”的例程通常要比使用游标执行的速度快 。如果开发时间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好 。
28.在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON , 在结束时设置 SET NOCOUNT OFF。无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息 。
29.尽量避免大事务操作,提高系统并发能力 。
30.尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理 。
求助:用php一次更新10万条记录怎么办检查下 php.ini 文件中Php更新脚本百万数据的限制
upload_max_filesize
post_max_size
如果超出Php更新脚本百万数据你提交Php更新脚本百万数据的文件大小Php更新脚本百万数据,就改大一些
改Php更新脚本百万数据了之后重启 apache!
用php代码向mysql数据库里插入10000000条数据我知道你为什么会停下来,因为mysql插入大量数据(1000W)Php更新脚本百万数据的情况下 , 执行时间需要的很长,而你八成设定执行时间不限制,如果时间默认超过30秒,那么程序就会自动停下来 。
1000 0000
?php
set_time_limit(0);#设置执行时间为不限制~
for($i=0;$i1000;$i){#嵌套循环,避免悲剧Php更新脚本百万数据;
for($j=0;$j10000;$j){
mysql_query(" 插入把~");
}
}
?
php每天抓取数据并更新新以前我用过querylist插件抓数据,服务器写和定时器,每天固定时间去运行脚本 。朝这个方式试试
高并发下数据的更新,应该 update table xxx set num = num - 1 的方式 , 这种方式可以保证数据的正确性 。
但是会出现 num 为负数的问题,如果库存为负数,显然是不合理的 。
于是,需要将 num 字段设置为 无符号整型,这样就不会出现负数了,因为 , 如果减到负数,就会更新失败 。
但是这种依然会造成很多无用的更新语句的执行 , 是不合理的 。
于是,update table xxx set num = num - 1 where num0 ,
这样当 num 等于0之后就不会去更新数据库了,减少了很多无用的开销 。
这种方式被称作“乐观锁”
此外 , 对于抢红包这种非整数的操作,我们应该转换为整数的操作 。
关于抢购超卖的控制
一般抢购功能是一个相对于正常售卖系统来说独立的子系统 , 这样既可以防止抢购时的高并发影响到正常系统,
【Php更新脚本百万数据 php更新脚本百万数据怎么弄】也可以做到针对于抢购业务的特殊处理 。
在后台设计一些功能 , 可以就昂正常的商品加入到抢购活动中并编辑成为抢购商品,写入到抢购商品表 , 当然
也可以把抢购商品表写入redis而不是数据表 。并且在原商品表写入一个同样的商品(id相同,用于订单查看,
此商品不可购买)
如果是数据表,为了控制超卖,需要对表进行行锁 , 更新的时候带上 where goods_amount0 。
如果是redis,使用 hincrby 一个负数来减库存 , 并且 hincrby 会返回改变后的值,再来判断返回值是否大于0,
因为redis每个命令都是原子性的,这样不用锁表就可控制超卖 。
Php更新脚本百万数据的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于php更新脚本百万数据怎么弄、Php更新脚本百万数据的信息别忘了在本站进行查找喔 。

    推荐阅读