Python中自带函数 python自带函数下载url文件

Python中的常用内置函数有哪些呢?(1)Lambda函数
用于创建匿名函数,即没有名称的函数 。它只是一个表达式,函数体比def简单很多 。当我们需要创建一个函数来执行单个操作并且可以在一行中编写时,就可以用到匿名函数了 。
Lamdba的主体是一个表达式,而不是一个代码块 。仅仅能在lambda表达式中封装有限的逻辑进去 。
利用Lamdba函数,往往可以将代码简化许多 。
(2)Map函数
会将一个函数映射到一个输入列表的所有元素上 , 比如我们先创建了一个函数来返回一个大写的输入单词 , 然后将此函数应有到列表colors中的所有元素 。
我们还可以使用匿名函数lamdba来配合map函数,这样可以更加精简 。
(3)Reduce函数
当需要对一个列表进行一些计算并返回结果时,reduce()是个非常有用的函数 。举个例子,当需要计算一个整数列表所有元素的乘积时 , 即可使用reduce函数实现 。
它与函数的最大的区别就是,reduce()里的映射函数(function)接收两个参数,而map接收一个参数 。
(4)enumerate函数
用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般用在for循环当中 。
它的两个参数 , 一个是序列、迭代器或其他支持迭代对象;另一个是下标起始位置,默认情况从0开始,也可以自定义计数器的起始编号 。
(5)Zip函数
【Python中自带函数 python自带函数下载url文件】用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表
当我们使用zip()函数时 , 如果各个迭代器的元素个数不一致,则返回列表长度与最短的对象相同 。
Python中冷门但非常好用的内置函数Python中有许多内置函数,不像print、len那么广为人知,但它们的功能却异常强大,用好了可以大大提高代码效率,同时提升代码的简洁度,增强可阅读性
Counter
collections在python官方文档中的解释是High-performance container datatypes , 直接的中文翻译解释高性能容量数据类型 。这个模块实现了特定目标的容器 , 以提供Python标准内建容器 dict , list , set , 和 tuple 的替代选择 。在python3.10.1中它总共包含以下几种数据类型:
容器名简介
namedtuple() 创建命名元组子类的工厂函数
deque 类似列表(list)的容器,实现了在两端快速添加(append)和弹出(pop)
ChainMap 类似字典(dict)的容器类,将多个映射集合到一个视图里面
Counter 字典的子类 , 提供了可哈希对象的计数功能
OrderedDict 字典的子类,保存了他们被添加的顺序
defaultdict 字典的子类,提供了一个工厂函数,为字典查询提供一个默认值
UserDict 封装了字典对象,简化了字典子类化
UserList 封装了列表对象 , 简化了列表子类化
UserString 封装了字符串对象,简化了字符串子类化
其中Counter中文意思是计数器,也就是我们常用于统计的一种数据类型,在使用Counter之后可以让我们的代码更加简单易读 。Counter类继承dict类,所以它能使用dict类里面的方法
举例
#统计词频
fruits = ['apple', 'peach', 'apple', 'lemon', 'peach', 'peach']
result = {}
for fruit in fruits:
if not result.get(fruit):
result[fruit] = 1
else:
result[fruit]= 1
print(result)
#{'apple': 2, 'peach': 3, 'lemon': 1}下面我们看用Counter怎么实现:
from collections import Counter
fruits = ['apple', 'peach', 'apple', 'lemon', 'peach', 'peach']
c = Counter(fruits)
print(dict(c))
#{'apple': 2, 'peach': 3, 'lemon': 1}显然代码更加简单了 , 也更容易阅读和维护了 。
elements()
返回一个迭代器 , 其中每个元素将重复出现计数值所指定次 。元素会按首次出现的顺序返回 。如果一个元素的计数值小于1 , elements()将会忽略它 。
c = Counter(a=4, b=2, c=0, d=-2)
sorted(c.elements())
['a', 'a', 'a', 'a', 'b', 'b']most_common([n])
返回一个列表,其中包含n个最常见的元素及出现次数,按常见程度由高到低排序 。如果n被省略或为None,most_common()将返回计数器中的所有元素 。计数值相等的元素按首次出现的顺序排序:
Counter('abracadabra').most_common(3)
[('a', 5), ('b', 2), ('r', 2)]这两个方法是Counter中最常用的方法,其他方法可以参考 python3.10.1官方文档
实战
Leetcode 1002.查找共用字符
给你一个字符串数组words,请你找出所有在words的每个字符串中都出现的共用字符(包括重复字符) , 并以数组形式返回 。你可以按任意顺序返回答案 。
输入:words = ["bella", "label", "roller"]
输出:["e", "l", "l"]
输入:words = ["cool", "lock", "cook"]
输出:["c", "o"]看到统计字符 , 典型的可以用Counter完美解决 。这道题是找出字符串列表里面每个元素都包含的字符,首先可以用Counter计算出每个元素每个字符出现的次数 , 依次取交集最后得出所有元素共同存在的字符 , 然后利用elements输出共用字符出现的次数
class Solution:
def commonChars(self, words: List[str]) - List[str]:
from collections import Counter
ans = Counter(words[0])
for i in words[1:]:
ans = Counter(i)
return list(ans.elements())提交一下 , 发现83个测试用例耗时48ms,速度还是不错的
sorted
在处理数据过程中,我们经常会用到排序操作,比如将列表、字典、元组里面的元素正/倒排序 。这时候就需要用到sorted(),它可以对任何可迭代对象进行排序,并返回列表
对列表升序操作:
a = sorted([2, 4, 3, 7, 1, 9])
print(a)
# 输出:[1, 2, 3, 4, 7, 9]对元组倒序操作:
sorted((4,1,9,6),reverse=True)
print(a)
# 输出:[9, 6, 4, 1]使用参数:key,根据自定义规则,按字符串长度来排序:
fruits = ['apple', 'watermelon', 'pear', 'banana']
a = sorted(fruits, key = lambda x : len(x))
print(a)
# 输出:['pear', 'apple', 'banana', 'watermelon']all
all() 函数用于判断给定的可迭代参数iterable中的所有元素是否都为 TRUE,如果是返回 True,否则返回 False 。元素除了是 0、空、None、False外都算True 。注意:空元组、空列表返回值为True 。
all(['a', 'b', 'c', 'd']) # 列表list,元素都不为空或0
True
all(['a', 'b', '', 'd']) # 列表list , 存在一个为空的元素
False
all([0, 1,2, 3]) # 列表list,存在一个为0的元素
False
all(('a', 'b', 'c', 'd')) # 元组tuple,元素都不为空或0
True
all(('a', 'b', '', 'd')) # 元组tuple,存在一个为空的元素
False
all((0, 1, 2, 3)) # 元组tuple,存在一个为0的元素
False
all([]) # 空列表
True
all(()) # 空元组
Trueany函数正好和all函数相反:判断一个tuple或者list是否全为空,0 , False 。如果全为空,0,False,则返回False;如果不全为空,则返回True 。
F-strings
在python3.6.2版本中,PEP 498提出一种新型字符串格式化机制,被称为 “字符串插值” 或者更常见的一种称呼是F-strings,F-strings提供了一种明确且方便的方式将python表达式嵌入到字符串中来进行格式化:
s1='Hello'
s2='World'
print(f'{s1} {s2}!')
# Hello World!在F-strings中我们也可以执行函数:
def power(x):
return x*x
x=4
print(f'{x} * {x} = {power(x)}')
# 4 * 4 = 16而且F-strings的运行速度很快,比传统的%-string和str.format()这两种格式化方法都快得多 , 书写起来也更加简单 。
本文主要讲解了python几种冷门但好用的函数,更多内容以后会陆陆续续更新~
python安装sum库1、Python中自带的sum函数
在Python中自带的函数中,它输入的对象可以是一个可迭代对象,比方说数组、列表,在使用的时候sum最多有两个参数,如果是一个参数的情况下,那么第一个参数是可迭代的,当有两个参数时 , 第二个参数只能是个数 。举个例子:
sum([1,2,3],2) 运行结果:8 三个元素相加之后再加2sum((1,2,3)) 运行结果:6sum({1,2,3}) 运行结果:6
2、numpy中的sum函数
这里的sum函数就是我们平时用的 , 同样的可以是元组、数组、列表,在数组中,可以指定维度的相加 , 默认情况下axis=none,sum将所有的元素相加,举个例子:
1、当sum没有参数的时候,那么会将所有的元素相加;
2、如果axis参数等于0时 , 则是按列相加;
举个例子:
import numpy as np b=np.array([[3,7,6],[2,4,5]])print(b.sum(axis=0))
相当于是:
[[3,7,6], [2,4,5]]
每一列对应元素相加3 2,7 4,6 5
运行结果输出:
[5 11 11]
3、当axis参数等于1时 , 就是按行相加,例如:
import numpy as np b=np.array([[3,7,6],[2,4,5]])print(b.sum(axis=1))
运行结果输出为:
[16 11]
在上面的实例中,就相当于是3 7 6,2 4 5,即每一行的元素分别相加 。
关于如何使用Python中的sum函数?Python中sum函数的多种用法的内容就分享到这里了 , 希望大家可以通过对这这篇文章的学习,掌握到更多sum函数的使用方法 。
python内置函数有哪些python常见的内置函数有:
1. abs()函数返回数字的绝对值 。
2. all() 函数用于判断给定的参数中的所有元素是否都为 TRUE,如果是返回 True , 否则返回 False 。元素除了是 0、空、None、False 外都算 True;空元组、空列表返回值为True 。
3.any() 函数用于判断给定的参数是否全部为False,是则返回False,如果有一个为True , 则返回True 。元素除了是 0、空、False外都算 TRUE 。
4. bin()函数返回一个整数int或者长整数long int的二进制表示 。
5. bool() 函数用于将给定参数转换为布尔类型,如果参数不为空或不为0,返回True;参数为0或没有参数,返回False 。
6. bytearray()方法返回一个新字节数组 。这个数组里的元素是可变的,并且每个元素的值范围: 0 = x256(即0-255) 。即bytearray()是可修改的二进制字节格式 。
7. callable()函数用于检查一个对象是否可调用的 。对于函数、方法、lambda函式、类以及实现了 __call__ 方法的类实例, 它都返回 True 。(可以加括号的都可以调用)
8. chr()函数用一个范围在range(256)内(即0~255)的整数作参数 , 返回一个对应的ASCII数值 。
9. dict()函数用来将元组/列表转换为字典格式 。
10. dir()函数不带参数时,返回当前范围内的变量、方法和定义的类型列表;带参数时,返回参数的属性、方法列表 。
扩展资料:
如何查看python3.6的内置函数?
1、首先先打开python自带的集成开发环境IDLE;
2、然后我们直接输入"dir(__builtins__)",需要注意的是builtins左右的下划线都是两个;
3、回车之后我们就可以看到python所有的内置函数;
4、接下来我们学习第二种查看python内置函数的方法 , 我们直接在IDLE中输入"import builtins",然后输入"dir(builtins)";
5、然后回车,同样的这个方法也可以得到所有的python内置的函数;
6、这里我们可以使用python内置函数len()来查看python内置函数的个数,这里我们直接输入"len(dir(builtins))";
7、回车之后我们可以看到系统返回值153,说明我们现在这个版本中有153个内置函数;
8、最后我们介绍一个比较有用的内置函数"help",python内置函数有一百多个,我们当然不能记住所有的函数,这里python提供了一个"help"函数,我们来看一个例子一起来体会一下help函数的用法,这里我们直接输入"help(len)",然后回车,会看到系统给我们对于内置函数"len"的解释,当然对于其他函数可能会有更加详细的解释以及用法提示 。
Python中自带函数的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于python自带函数下载url文件、Python中自带函数的信息别忘了在本站进行查找喔 。

    推荐阅读