mongodb性能优化方案 mongodb参数调优

mongodb的find查询10万条以上的数据有卡顿现象,请问如何选择优化的方式...1、这样的设计方式是在非关系型数据库中常用的 , 也就是我们所说的范式化设计 。在MongoDB中我们将与主键没有直接关系的图书单独提取到另一个集合,用存储主键的方式进行关联查询 。
2、找出元凶经过前面的问题定位 , 我们已经能确定是MongoManager的定时器搞的鬼了 。
3、在短时间内完成 MongoDB 差异数据对比,可以采用以下方法: 使用专业的数据对比工具:市场上有一些专业的中间件工具,如 NineData,提供了一种高效且易于使用的 MongoDB 数据对比功能 。
【mongoDB】mongoDB的高可用、一致性BASE理论是在一致性和可用性上的平衡,现在大部分分布式系统都是基于 BASE理论设计的,当然MongoDB也是遵循此理论的 。
【mongodb性能优化方案 mongodb参数调优】MongoDB 常用的优化措施有很多,以下是一些常见的优化措施: 合理设计数据库结构,避免使用冗余数据和重复数据 。创建合适的索引,以加速查询速度 。配置 MongoDB 的缓存大小 , 以提高写入性能 。
MongoDB的主要客户端是可以交互的js shell 通过mongo启动,使用js shell能使用js直接与MongoDB进行交流,像使用sql语句查询mysql数据一样使用js语法查询MongoDB的数据,另外还提供了各种语言的驱动包 , 方便各种语言的接入 。
MongoDB如何优化查询性能?通过查看一个查询的explain()输出信息,可以知道查询使用了哪个索引 , 以及是如何使用的 。对于任意查询,都可以在最后添加一个explain()调用(与调用sort()或者limit()一样,不过explain()必须放在最后) 。
建立好合适索引 , 尽量使用更多的精确查询搭配模糊查询一起,不需要返回的字段要屏蔽,增大机器内存 , 使用固态硬盘,海量数据使用集群部署 。
在MongoDB中我们将与主键没有直接关系的图书单独提取到另一个集合,用存储主键的方式进行关联查询 。当我们要查询文章和评论时需要先查询到所需的文章 , 再从文章中获取评论id,最后用获得的完整的文章及其评论 。
排除方式七:查看mongodb数据文件 , 看是否已经很大?经查看,总大小才64M,这比32位文件上限的2G来讲,可以基本忽略;排除方式八:连接字符串 。
优化 MongoDB 集群负载均衡:在实际生产环境中,数据访问热度和节点性能差异可能导致某些节点超载 。
从windows服务中移除MongoDB服务 C:\Users\Administrator mongod --remove 5)通过mongod --help查看更多的配置命令选项 。

    推荐阅读