Golang 线程和协程的区别线程:
多线程是为了解决CPU利用率的问题,线程则是为了减少上下文切换时的开销,进程和线程在Linux中没有本质区别,最大的不同就是进程有自己独立的内存空间 , 而线程是共享内存空间 。
在进程切换时需要转换内存地址空间 , 而线程切换没有这个动作,所以线程切换比进程切换代价要小得多 。
协程:
想要简单 , 又要性能高,协程就可以达到我们的目的 , 它是用户视角的一种抽象,操作系统并没有这个概念,主要思想是在用户态实现调度算法,用少量线程完成大量任务的调度 。
Goroutine是GO语言实现的协程,其特点是在语言层面就支持,使用起来十分方便,它的核心是MPG调度模型:M即内核线程;P即处理器 , 用来执行Goroutine , 它维护了本地可运行队列;G即Goroutine,代码和数据结构;S及调度器,维护M和P的信息 。
【golang详解】go语言GMP(GPM)原理和调度Goroutine调度是一个很复杂go语言协程的原理的机制go语言协程的原理,下面尝试用简单go语言协程的原理的语言描述一下Goroutine调度机制,想要对其有更深入的了解可以去研读一下源码 。
首先介绍一下GMP什么意思go语言协程的原理:
G ----------- goroutine: 即Go协程 , 每个go关键字都会创建一个协程 。
M ---------- thread内核级线程 , 所有的G都要放在M上才能运行 。
P ----------- processor处理器 , 调度G到M上,其维护了一个队列,存储了所有需要它来调度的G 。
Goroutine 调度器P和 OS 调度器是通过 M 结合起来的,每个 M 都代表了 1 个内核线程,OS 调度器负责把内核线程分配到 CPU 的核上执行
模型图:
避免频繁的创建、销毁线程 , 而是对线程的复用 。
1)work stealing机制
当本线程无可运行的G时,尝试从其他线程绑定的P偷取G,而不是销毁线程 。
2)hand off机制
当本线程M0因为G0进行系统调用阻塞时,线程释放绑定的P,把P转移给其他空闲的线程执行 。进而某个空闲的M1获取P,继续执行P队列中剩下的G 。而M0由于陷入系统调用而进被阻塞,M1接替M0的工作,只要P不空闲,就可以保证充分利用CPU 。M1的来源有可能是M的缓存池,也可能是新建的 。当G0系统调用结束后,根据M0是否能获取到P,将会将G0做不同的处理:
如果有空闲的P,则获取一个P,继续执行G0 。
如果没有空闲的P , 则将G0放入全局队列 , 等待被其他的P调度 。然后M0将进入缓存池睡眠 。
如下图
GOMAXPROCS设置P的数量 , 最多有GOMAXPROCS个线程分布在多个CPU上同时运行
在Go中一个goroutine最多占用CPU 10ms,防止其他goroutine被饿死 。
具体可以去看另一篇文章
【Golang详解】go语言调度机制 抢占式调度
当创建一个新的G之后优先加入本地队列,如果本地队列满了 , 会将本地队列的G移动到全局队列里面,当M执行work stealing从其他P偷不到G时,它可以从全局G队列获取G 。
协程经历过程
我们创建一个协程 go func()经历过程如下图:
说明:
这里有两个存储G的队列,一个是局部调度器P的本地队列、一个是全局G队列 。新创建的G会先保存在P的本地队列中,如果P的本地队列已经满了就会保存在全局的队列中;处理器本地队列是一个使用数组构成的环形链表,它最多可以存储 256 个待执行任务 。
G只能运行在M中 , 一个M必须持有一个P,M与P是1:1的关系 。M会从P的本地队列弹出一个可执行状态的G来执行,如果P的本地队列为空,就会想其他的MP组合偷取一个可执行的G来执行;
一个M调度G执行的过程是一个循环机制;会一直从本地队列或全局队列中获取G
上面说到P的个数默认等于CPU核数,每个M必须持有一个P才可以执行G,一般情况下M的个数会略大于P的个数,这多出来的M将会在G产生系统调用时发挥作用 。类似线程池,Go也提供一个M的池子,需要时从池子中获?。猛攴呕爻刈?,不够用时就再创建一个 。
work-stealing调度算法:当M执行完了当前P的本地队列队列里的所有G后,P也不会就这么在那躺尸啥都不干,它会先尝试从全局队列队列寻找G来执行,如果全局队列为空,它会随机挑选另外一个P,从它的队列里中拿走一半的G到自己的队列中执行 。
如果一切正常,调度器会以上述的那种方式顺畅地运行,但这个世界没这么美好,总有意外发生,以下分析goroutine在两种例外情况下的行为 。
Go runtime会在下面的goroutine被阻塞的情况下运行另外一个goroutine:
用户态阻塞/唤醒
当goroutine因为channel操作或者network I/O而阻塞时(实际上golang已经用netpoller实现了goroutine网络I/O阻塞不会导致M被阻塞,仅阻塞G,这里仅仅是举个栗子),对应的G会被放置到某个wait队列(如channel的waitq),该G的状态由_Gruning变为_Gwaitting,而M会跳过该G尝试获取并执行下一个G , 如果此时没有可运行的G供M运行,那么M将解绑P,并进入sleep状态;当阻塞的G被另一端的G2唤醒时(比如channel的可读/写通知),G被标记为 , 尝试加入G2所在P的runnext(runnext是线程下一个需要执行的 Goroutine 。), 然后再是P的本地队列和全局队列 。
系统调用阻塞
当M执行某一个G时候如果发生了阻塞操作,M会阻塞,如果当前有一些G在执行 , 调度器会把这个线程M从P中摘除,然后再创建一个新的操作系统的线程(如果有空闲的线程可用就复用空闲线程)来服务于这个P 。当M系统调用结束时候,这个G会尝试获取一个空闲的P执行 , 并放入到这个P的本地队列 。如果获取不到P , 那么这个线程M变成休眠状态 , 加入到空闲线程中 , 然后这个G会被放入全局队列中 。
队列轮转
可见每个P维护着一个包含G的队列 , 不考虑G进入系统调用或IO操作的情况下,P周期性的将G调度到M中执行,执行一小段时间,将上下文保存下来,然后将G放到队列尾部,然后从队列中重新取出一个G进行调度 。
除了每个P维护的G队列以外 , 还有一个全局的队列,每个P会周期性地查看全局队列中是否有G待运行并将其调度到M中执行 , 全局队列中G的来源,主要有从系统调用中恢复的G 。之所以P会周期性地查看全局队列,也是为了防止全局队列中的G被饿死 。
除了每个P维护的G队列以外,还有一个全局的队列,每个P会周期性地查看全局队列中是否有G待运行并将其调度到M中执行,全局队列中G的来源,主要有从系统调用中恢复的G 。之所以P会周期性地查看全局队列,也是为了防止全局队列中的G被饿死 。
M0
M0是启动程序后的编号为0的主线程,这个M对应的实例会在全局变量rutime.m0中,不需要在heap上分配,M0负责执行初始化操作和启动第一个G,在之后M0就和其他的M一样了
G0
G0是每次启动一个M都会第一个创建的goroutine,G0仅用于负责调度G,G0不指向任何可执行的函数,每个M都会有一个自己的G0 , 在调度或系统调用时会使用G0的栈空间,全局变量的G0是M0的G0
一个G由于调度被中断,此后如何恢复go语言协程的原理?
中断的时候将寄存器里的栈信息,保存到自己的G对象里面 。当再次轮到自己执行时,将自己保存的栈信息复制到寄存器里面,这样就接着上次之后运行了 。
我这里只是根据自己的理解进行了简单的介绍,想要详细了解有关GMP的底层原理可以去看Go调度器 G-P-M 模型的设计者的文档或直接看源码
参考:()
()
协程与异步IO协程,又称微线程,纤程 。英文名 Coroutine。Python对协程的支持是通过 generator 实现的 。在generator中,我们不但可以通过for循环来迭代 , 还可以不断调用 next()函数 获取由 yield 语句返回的下一个值 。但是Python的yield不但可以返回一个值 , 它还可以接收调用者发出的参数 。yield其实是终端当前的函数,返回给调用方 。python3中使用yield来实现range,节省内存 , 提高性能 , 懒加载的模式 。
asyncio是Python3.4 版本引入的 标准库 ,直接内置了对异步IO的支持 。
从Python3.5 开始引入了新的语法 async 和 await,用来简化yield的语法:
import asyncio
import threading
async def compute(x, y):
print("Compute %s%s ..." % (x, y))
print(threading.current_thread().name)
await asyncio.sleep(xy)
return xy
async def print_sum(x, y):
result = await compute(x, y)
print("%s%s = %s" % (x, y, result))
print(threading.current_thread().name)
if __name__ == "__main__":
loop = asyncio.get_event_loop()
tasks = [print_sum(1, 2), print_sum(3, 4)]
loop.run_until_complete(asyncio.wait(tasks))
loop.close()
线程是内核进行抢占式的调度的,这样就确保了每个线程都有执行的机会 。而 coroutine 运行在同一个线程中,由语言的运行时中的EventLoop(事件循环) 来进行调度 。和大多数语言一样 , 在 Python 中,协程的调度是非抢占式的 , 也就是说一个协程必须主动让出执行机会,其他协程才有机会运行 。
让出执行的关键字就是 await 。也就是说一个协程如果阻塞了,持续不让出 CPU,那么整个线程就卡住了,没有任何并发 。
PS: 作为服务端,event loop最核心的就是IO多路复用技术,所有来自客户端的请求都由IO多路复用函数来处理;作为客户端 , event loop的核心在于利用Future对象延迟执行,并使用send函数激发协程,挂起,等待服务端处理完成返回后再调用CallBack函数继续下面的流程
Go语言的协程是 语言本身特性 ,erlang和golang都是采用了CSP(Communicating Sequential Processes)模式(Python中的协程是eventloop模型) , 但是erlang是基于进程的消息通信,go是基于goroutine和channel的通信 。
Python和Go都引入了消息调度系统模型,来避免锁的影响和进程/线程开销大的问题 。
协程从本质上来说是一种用户态的线程 , 不需要系统来执行抢占式调度,而是在语言层面实现线程的调度。因为协程 不再使用共享内存/数据,而是使用 通信 来共享内存/锁,因为在一个超级大系统里具有无数的锁,共享变量等等会使得整个系统变得无比的臃肿,而通过消息机制来交流,可以使得每个并发的单元都成为一个独立的个体,拥有自己的变量,单元之间变量并不共享,对于单元的输入输出只有消息 。开发者只需要关心在一个并发单元的输入与输出的影响 , 而不需要再考虑类似于修改共享内存/数据对其它程序的影响 。
2020-08-20:GO语言中的协程与Python中的协程的区别?福哥答案2020-08-20go语言协程的原理:
1.golanggo语言协程的原理的协程是基于gpm机制go语言协程的原理,是可以多核多线程的 。Python的协程是eventloop模型(IO多路复用技术)实现go语言协程的原理,协程是严格的 1:N 关系,也就是一个线程对应了多个协程 。虽然可以实现异步I/O,但是不能有效利用多核(GIL) 。
2.golang用go func 。python用import asyncio , async/await表达式 。
评论
【go语言协程的原理 go语言 协程】关于go语言协程的原理和go语言 协程的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站 。
推荐阅读
- flutter评论组件逻辑,flutter 界面与逻辑分离
- 查看oracle数据库类型,查看oracle数据库的sid
- 怎么禁用电视下载快手软件,怎么禁用电视下载快手软件安装
- java反射生成代码,java反射代码实现
- go与c语言混合编程 go语言与c语言
- sqlserver创建表结构,sql server创建表
- js获取服务器编码格式,js获取服务器ip地址
- 无人直播特别火,无人直播有什么用
- python多进程函数 python3 多进程