go语言编译lib Go语言编译器安卓版

如何Golang开发Android应用环境配置好复杂,我不得不唠叨几句 。
需要下载golang1.4rc版,下载ndk,然后编译 。然后用go get 下载gobind这个工具 , 然后,将写好go语言编译lib的代码用gobind转化下,然后使用特殊go语言编译lib的编译命令 , 将代码编译成.so文件,将生成的相关文件,放到android studio的项目中 。然后java代码中,利用jni调用引用的代码 。
... 好,接着往下看吧 。
环境准备
一台Linux 64的机器
一个带有AndroidStudioIDE的开发机器
因为环境配置实在复杂,所以我们引入的docker 。
docker pull codeskyblue/docker-goandroid
docker run --rm -ti codeskyblue/docker-goandroid bash
cd example; echo "view example projects
docker起来之后,什么就都配置好go语言编译lib了,NDK啦,java啦,GO的环境变量了,等等,并且还预装了vim,gradle,tmux,git,syncthing,svn
开始写代码
写代码之前,先约定下目录结构
go的代码都放在src/golib下,编译使用make.bash编译脚本,看下这个文件树
.
|-- app.iml
|-- build.gradle
|-- libs/armeabi-v7a # go编译生成的so文件
|`-- libgojni.so
|-- main.go_tmpl # 一个模板文件,先不用管它
|-- make.bash # 编译脚本,用来生成.so和Java代码
`-- src
|-- golib
||-- hi
|||-- go_hi?0?2?0?2?0?2 # 自动生成的代码
|||`-- go_hi.go
||`-- hi.go # 需要编写的代码
|`-- main.go
`-- main
|-- AndroidManifest.xml
|-- java
||-- go # 自动生成的代码
|||-- Go.java
|||-- Seq.java
||`-- hi
||`-- Hi.java
|`-- me/shengxiang/gohello # 主要的逻辑代码
|`-- MainActivity.java
`-- res
我已经写了一个例子 , 先直接搞下来
编译下 , 试试行不行(就算不行问题应该也不大 , 因为大问题都被我消灭了)
cd GoHello/app
./make.bash
../gradlew build
一切顺利的话在build/outputs/apk下应该可以看到app-debug.apk这个文件 。(剧透下,这个文件只有800多K)
编译好的我放到qiniu上了,可以点击下载看看
下面可以尝试改改,我抛砖引玉说下
打开hi.go这个文件
hi.go的内容,比较简单,我们写Go代码主要就是这部分
// Package hi provides a function for saying hello.
package hi
import "fmt"
func Hello(name string) {
fmt.Printf("Hello, %s!\n", name)
return "(Go)World"
}
文件末尾添加下面这行代码
func Welcome(name string) string {
return fmt.Sprintf("Welcome %s to the go world", name)
}
使用./make.bash重新编译下
打开MainActivity.java 修改下OnClickListener事件
button.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {
String message = Hi.Welcome("yourname");
Toast.makeText(MainActivity.this, message, Toast.LENGTH_LONG).show();
}
});
编译运行下 , 把生成的apk安装到手机上试试 。
原理解读(有兴趣的接着看)
首先说下gobind这个工具 。
go_hi/go_hi.go这个文件时通过gobind这个工具生成的,用来配合一个简单的程序,生成.so文件
// go_hi.go
package go_hi
import (
"golang.org/x/mobile/bind/seq"
"example/hi"
)
func proxy_Hello(out, in *seq.Buffer) {
param_name := in.ReadUTF16()
hi.Hello(param_name)
}
func init() {
seq.Register("hi", 1, proxy_Hello)
}
这个简单的程序内容是这样的
// main.go
package main
import (
"golang.org/x/mobile/app"
_ "golang.org/x/mobile/bind/java"
_ "example/hi/go_hi"
)
func main() {
app.Run(app.Callbacks{})
}
src/MyActivity.java文件内容是这样的
import ...
import go.Go; // 引入Go这个包
import go.hi.Hi; // gobind生成的代码
public class MainActivity extends Activity {
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
Go.init(getApplicationContext()); // 初始化两个线程
Hi.Hello("world");
}
}
其中有一句Go.init(...)这里再看go.Go这个包是什么样子的
public final class Go {
// init loads libgojni.so and starts the runtime.
public static void init(Context context) {
... 判断该函数是否该执行的代码 -- 省略 --
System.loadLibrary("gojni"); // gojni需要这句
new Thread("GoMain") {
public void run() {
Go.run(); // run()是一个native方法
}
}.start();
Go.waitForRun(); // 这个也是一个native方法
// 这部分可以理解为,启动了一个后台线程不断的接收结果到缓存中 。
new Thread("GoReceive") {
public void run() { Seq.receive(); }
}.start();
}
private static boolean running = false;
private static native void run();
private static native void waitForRun();
}
MyActivity.java中还有段代码是 Hi.Hello("world");,打开Hi.java路径在src/go/hi/Hi.java,这个文件也是gobind生成的,是用来给java方便的调用.so文件
// Hi.java
// File is generated by gobind. Do not edit.
package go.hi;
import go.Seq;
public abstract class Hi {
private Hi() {} // uninstantiable
public static void Hello(String name) {
go.Seq _in = new go.Seq();
go.Seq _out = new go.Seq();
_in.writeUTF16(name);
Seq.send(DESCRIPTOR, CALL_Hello, _in, _out); // 下面接着说
}
private static final int CALL_Hello = 1;
private static final String DESCRIPTOR = "hi";
}
Seq.send这部分实际上最终调用的是一段go代码
func Send(descriptor string, code int, req *C.uint8_t, reqlen C.size_t, res **C.uint8_t, reslen *C.size_t) {
fn := seq.Registry[descriptor][code]
in := new(seq.Buffer)
if reqlen0 {
in.Data = https://www.04ip.com/post/(*[maxSliceLen]byte)(unsafe.Pointer(req))[:reqlen]
}
out := new(seq.Buffer)
fn(out, in)
seqToBuf(res, reslen, out)
}
go语言如何调用c函数直接嵌入c源代码到go代码里面
package main
/*
#include stdio.h
void myhello(int i) {
printf("Hello C: %d\n", i);
}
*/
import "C"
import "fmt"
func main() {
C.myhello(C.int(12))
fmt.Println("Hello Go");
}
需要注意的是C代码必须放在注释里面
import "C"语句和前面的C代码之间不能有空行
运行结果
$ go build main.go./main
Hello C: 12
Hello Go
分开c代码到单独文件
嵌在一起代码结构不是很好看,很多人包括我 , 还是喜欢把两个分开,放在不同的文件里面,显得干净 , go源文件里面是go的源代码,c源文件里面是c的源代码 。
$ ls
hello.chello.hmain.go
$ cat hello.h
void hello(int);
$ cat hello.c
#include stdio.h
void hello(int i) {
printf("Hello C: %d\n", i);
}
$ cat main.go
package main
// #include "hello.h"
import "C"
import "fmt"
func main() {
C.hello(C.int(12))
fmt.Println("Hello Go");
}
编译运行
$ go build./main
Hello C: 12
Hello Go
编译成库文件
如果c文件比较多,最好还是能够编译成一个独立的库文件,然后go来调用库 。
$ find mylib main
mylib
mylib/hello.h
mylib/hello.c
main
main/main.go
编译库文件
$ cd mylib
# gcc -fPIC -shared -o libhello.so hello.c
编译go程序
$ cd main
$ cat main.go
package main
// #cgo CFLAGS: -I../mylib
// #cgo LDFLAGS: -L../mylib -lhello
// #include "hello.h"
import "C"
import "fmt"
func main() {
C.hello(C.int(12))
fmt.Println("Hello Go");
}
$ go build main.go
运行
$ export LD_LIBRARY_PATH=../mylib
$ ./main
Hello C: 12
Hello Go
在我们的例子中 , 库文件是编译成动态库的 , main程序链接的时候也是采用的动态库
$ ldd main
linux-vdso.so.1 =(0x00007fffc7968000)
libhello.so = ../mylib/libhello.so (0x00007f513684c000)
libpthread.so.0 = /lib64/libpthread.so.0 (0x00007f5136614000)
libc.so.6 = /lib64/libc.so.6 (0x00007f5136253000)
/lib64/ld-linux-x86-64.so.2 (0x000055d819227000)
理论上讲也是可以编译成整个一静态链接的可执行程序,由于我的机器上缺少静态链接的系统库,比如libc.a,所以只能编译成动态链接 。
golang编写的项目,使用alpine制作镜像遇到的一个问题解决 GraphicsMagick,一款高性能的图片处理工具,由于项目需要 , 用到它 , 自然而然用到了关于gm的第三方库这个库按照作者的提示,要安装GraphicsMagick-devel依赖 。
项目写完了,接下来用alpine做为基础镜像,准备制作项目的镜像 。
golang项目,是在ubuntu下编写的,编译成二进制文件了,只要把二进制文件放进镜像里即可,遇到的问题有2个
1 容器跑起来,一直报二进制文件no found
我认认真真的确认了文件,以及它的路径,确实是存在的,怎么会报文件找不到呢?!
原来是musl和glibc是兼容的问题,在Dockerfile里要加以下两步
2 Error loading shared library libGraphicsMagickWand-Q16.so.2: No such file or directory
明明按要求安装GraphicsMagick-devel依赖,为啥还报这种错
于是想到了,是不是也要ln做一下软链接呢?于是学着上面的样子在Dockerfile里补上
再跑,问题依旧,莫非是软连接的地址写错了!回到开发的电脑上用ldd命令查看一下
果然,编译后的二进制文件依赖路径是/lib , 而不是/lib64
于是,修改Dockerfile里的写法
问题解决,开心:)
参考资料:
windows 怎么编译 go语言1、解压压缩包到go工作目录,如解压到E:\opensource\go\go,解压后的目录结构如下:
E:\opensource\go\go
├─api
├─bin
│├─go.exe
│├─godoc.exe
│└─gofmt.exe
├─doc
├─include
├─lib
├─misc
├─pkg
├─src
└─test
2、增加环境变量GOROOT , 取值为上面的go工作目录
3、Path环境变量中添加";%GOROOT%\bin" , 以便能够直接调用go命令来编译go代码 , 至此go编译环境就配置好了
注:如果不想手动设置系统环境变量 , 也可下载go启动环境批处理附件 ,
修改goenv.bat文件中的GOROOT值为上面的go工作目录后直接双击该bat文件,go编译环境变量即设置完成 。
4、测试go编译环境,启动一个cmd窗口,直接输入go,看到下面的提示就是搭建成功了
E:\opensource\go\gogo
Go is a tool for managing Go source code.
Usage:
go command [arguments]
The commands are:
buildcompile packages and dependencies
cleanremove object files
docrun godoc on package sources
envprint Go environment information
fixrun go tool fix on packages
fmtrun gofmt on package sources
getdownload and install packages and dependencies
installcompile and install packages and dependencies
listlist packages
runcompile and run Go program
testtest packages
toolrun specified go tool
versionprint Go version
vetrun go tool vet on packages
Use "go help [command]" for more information about a command.
Additional help topics:
gopathGOPATH environment variable
packagesdescription of package lists
remoteremote import path syntax
testflagdescription of testing flags
testfuncdescription of testing functions
Use "go help [topic]" for more information about that topic.
5、编译helloworld测试程序,go语言包中test目录带有helloworld.go测试程序,源码见"附一 helloworld.go" ,
直接调用"go build helloworld.go"就生成了"helloworld.exe"可执行程序,运行一下这个程序看到了我们期望的hello,wolrd 。
E:\opensource\go\go\testgo build helloworld.go
E:\opensource\go\go\testhelloworld.exe
hello, world
E:\opensource\go\go\test
附一 helloworld.go
// cmpout
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Test that we can do page 1 of the C book.
package main
func main() {
print("hello, world\n")
}
如何看待go语言泛型的最新设计?Go 由于不支持泛型而臭名昭著,但最近,泛型已接近成为现实 。Go 团队实施了一个看起来比较稳定的设计草案,并且正以源到源翻译器原型的形式获得关注 。本文讲述的是泛型的最新设计 , 以及如何自己尝试泛型 。
例子
FIFO Stack
假设你要创建一个先进先出堆栈 。没有泛型,你可能会这样实现:
type Stack []interface{}func (s Stack) Peek() interface{} {
return s[len(s)-1]
}
func (s *Stack) Pop() {
*s = (*s)[:
len(*s)-1]
}
func (s *Stack) Push(value interface{}) {
*s =
append(*s, value)
}
但是,这里存在一个问题:每当你 Peek 项时,都必须使用类型断言将其从 interface{} 转换为你需要的类型 。如果你的堆栈是 *MyObject 的堆栈,则意味着很多 s.Peek().(*MyObject)这样的代码 。这不仅让人眼花缭乱 , 而且还可能引发错误 。比如忘记 * 怎么办?或者如果您输入错误的类型怎么办?s.Push(MyObject{})` 可以顺利编译,而且你可能不会发现到自己的错误,直到它影响到你的整个服务为止 。
通常,使用 interface{} 是相对危险的 。使用更多受限制的类型总是更安全,因为可以在编译时而不是运行时发现问题 。
泛型通过允许类型具有类型参数来解决此问题:
type Stack(type T) []Tfunc (s Stack(T)) Peek() T {
return s[len(s)-1]
}
func (s *Stack(T)) Pop() {
*s = (*s)[:
len(*s)-1]
}
func (s *Stack(T)) Push(value T) {
*s =
append(*s, value)
}
这会向 Stack 添加一个类型参数,从而完全不需要 interface{} 。现在,当你使用 Peek() 时,返回的值已经是原始类型,并且没有机会返回错误的值类型 。这种方式更安全 , 更容易使用 。(译注:就是看起来更丑陋,^-^)
此外,泛型代码通常更易于编译器优化,从而获得更好的性能(以二进制大小为代价) 。如果我们对上面的非泛型代码和泛型代码进行基准测试,我们可以看到区别:
type MyObject struct {
X
int
}
var sink MyObjectfunc BenchmarkGo1(b *testing.B) {
for i := 0; ib.N; i{
var s Stack
s.Push(MyObject{})
s.Push(MyObject{})
s.Pop()
sink = s.Peek().(MyObject)
}
}
func BenchmarkGo2(b *testing.B) {
for i := 0; ib.N; i{
var s Stack(MyObject)
s.Push(MyObject{})
s.Push(MyObject{})
s.Pop()
sink = s.Peek()
}
}
结果:
BenchmarkGo1BenchmarkGo1-161283752887.0 ns/op48 B/op2 allocs/opBenchmarkGo2BenchmarkGo2-162840647941.9 ns/op24 B/op2 allocs/op
在这种情况下,我们分配更少的内存 , 同时泛型的速度是非泛型的两倍 。
合约(Contracts)
上面的堆栈示例适用于任何类型 。但是,在许多情况下 , 你需要编写仅适用于具有某些特征的类型的代码 。例如,你可能希望堆栈要求类型实现 String() 函数
【go语言编译lib Go语言编译器安卓版】go语言编译lib的介绍就聊到这里吧 , 感谢你花时间阅读本站内容,更多关于Go语言编译器安卓版、go语言编译lib的信息别忘了在本站进行查找喔 。

    推荐阅读