本文概述
- 建议:在继续解决方案之前, 请先在{IDE}上尝试使用你的方法。
- C ++
- Java
合并排序包括将数组递归拆分为两部分, 进行排序, 最后将它们合并。合并排序的一种变体称为3向合并排序, 其中不是将数组拆分为2部分, 而是将其拆分为3部分。
合并排序以递归方式将数组分解为大小为一半的子数组。同样, 三向合并排序会将数组分解为大小为三分之一的子数组。
例子:
Input: 45, -2, -45, 78, 30, -42, 10, 19 , 73, 93 Output : -45 -42 -2 10 19 30 45 73 78 93 Input: 23, -19Output : -1923
推荐:请尝试以下方法{IDE}首先, 在继续解决方案之前。C ++
// C++ Program to perform 3 way Merge Sort
#include <
bits/stdc++.h>
using namespace std;
/* Merge the sorted ranges [low, mid1), [mid1, mid2)
and [mid2, high) mid1 is first midpoint
index in overall range to merge mid2 is second
midpoint index in overall range to merge*/
void merge( int gArray[], int low, int mid1, int mid2, int high, int destArray[])
{
int i = low, j = mid1, k = mid2, l = low;
// choose smaller of the smallest in the three ranges
while ((i <
mid1) &
&
(j <
mid2) &
&
(k <
high))
{
if (gArray[i] <
gArray[j])
{
if (gArray[i] <
gArray[k])
{
destArray[l++] = gArray[i++];
}
else
{
destArray[l++] = gArray[k++];
}
}
else
{
if (gArray[j] <
gArray[k])
{
destArray[l++] = gArray[j++];
}
else
{
destArray[l++] = gArray[k++];
}
}
} // case where first and second ranges
// have remaining values
while ((i <
mid1) &
&
(j <
mid2))
{
if (gArray[i] <
gArray[j])
{
destArray[l++] = gArray[i++];
}
else
{
destArray[l++] = gArray[j++];
}
} // case where second and third ranges
// have remaining values
while ((j <
mid2) &
&
(k <
high))
{
if (gArray[j] <
gArray[k])
{
destArray[l++] = gArray[j++];
}
else
{
destArray[l++] = gArray[k++];
}
} // case where first and third ranges have
// remaining values
while ((i <
mid1) &
&
(k <
high))
{
if (gArray[i] <
gArray[k])
{
destArray[l++] = gArray[i++];
}
else
{
destArray[l++] = gArray[k++];
}
} // copy remaining values from the first range
while (i <
mid1)
destArray[l++] = gArray[i++];
// copy remaining values from the second range
while (j <
mid2)
destArray[l++] = gArray[j++];
// copy remaining values from the third range
while (k <
high)
destArray[l++] = gArray[k++];
} /* Performing the merge sort algorithm on the
given array of values in the rangeof indices
[low, high). low is minimum index, high is
maximum index (exclusive) */
void mergeSort3WayRec( int gArray[], int low, int high, int destArray[])
{
// If array size is 1 then do nothing
if (high - low <
2)
return ;
// Splitting array into 3 parts
int mid1 = low + ((high - low) / 3);
int mid2 = low + 2 * ((high - low) / 3) + 1;
// Sorting 3 arrays recursively
mergeSort3WayRec(destArray, low, mid1, gArray);
mergeSort3WayRec(destArray, mid1, mid2, gArray);
mergeSort3WayRec(destArray, mid2, high, gArray);
// Merging the sorted arrays
merge(destArray, low, mid1, mid2, high, gArray);
}void mergeSort3Way( int gArray[], int n)
{
// if array size is zero return null
if (n == 0)
return ;
// creating duplicate of given array
int fArray[n];
// copying alements of given array into
// duplicate array
for ( int i = 0;
i <
n;
i++)
fArray[i] = gArray[i];
// sort function
mergeSort3WayRec(fArray, 0, n, gArray);
// copy back elements of duplicate array
// to given array
for ( int i = 0;
i <
n;
i++)
gArray[i] = fArray[i];
} // Driver Code
int main()
{
int data[] = {45, -2, -45, 78, 30, -42, 10, 19, 73, 93};
mergeSort3Way(data, 10);
cout <
<
"After 3 way merge sort: " ;
for ( int i = 0;
i <
10;
i++)
{
cout <
<
data[i] <
<
" " ;
}
return 0;
}// This code is contributed by Rashmi Kumari
Java
// Java program to perform 3 way Merge Sort
import java.util.*;
public class MergeSort3Way
{
// Functionfor 3-way merge sort process
public static void mergeSort3Way(Integer[] gArray)
{
// if array of size is zero returns null
if (gArray == null )
return ;
// creating duplicate of given array
Integer[] fArray = new Integer[gArray.length];
// copying alements of given array into
// duplicate array
for ( int i = 0 ;
i <
fArray.length;
i++)
fArray[i] = gArray[i];
// sort function
mergeSort3WayRec(fArray, 0 , gArray.length, gArray);
// copy back elements of duplicate array
// to given array
for ( int i = 0 ;
i <
fArray.length;
i++)
gArray[i] = fArray[i];
}/* Performing the merge sort algorithm on the
given array of values in the rangeof indices
[low, high).low is minimum index, high is
maximum index (exclusive) */
public static void mergeSort3WayRec(Integer[] gArray, int low, int high, Integer[] destArray)
{
// If array size is 1 then do nothing
if (high - low <
2 )
return ;
// Splitting array into 3 parts
int mid1 = low + ((high - low) / 3 );
int mid2 = low + 2 * ((high - low) / 3 ) + 1 ;
// Sorting 3 arrays recursively
mergeSort3WayRec(destArray, low, mid1, gArray);
mergeSort3WayRec(destArray, mid1, mid2, gArray);
mergeSort3WayRec(destArray, mid2, high, gArray);
// Merging the sorted arrays
merge(destArray, low, mid1, mid2, high, gArray);
}/* Merge the sorted ranges [low, mid1), [mid1, mid2) and [mid2, high) mid1 is first midpoint
index in overall range to merge mid2 is second
midpoint index in overall range to merge*/
public static void merge(Integer[] gArray, int low, int mid1, int mid2, int high, Integer[] destArray)
{
int i = low, j = mid1, k = mid2, l = low;
// choose smaller of the smallest in the three ranges
while ((i <
mid1) &
&
(j <
mid2) &
&
(k <
high))
{
if (gArray[i].compareTo(gArray[j]) <
0 )
{
if (gArray[i].compareTo(gArray[k]) <
0 )
destArray[l++] = gArray[i++];
else
destArray[l++] = gArray[k++];
}
else
{
if (gArray[j].compareTo(gArray[k]) <
0 )
destArray[l++] = gArray[j++];
else
destArray[l++] = gArray[k++];
}
}// case where first and second ranges have
// remaining values
while ((i <
mid1) &
&
(j <
mid2))
{
if (gArray[i].compareTo(gArray[j]) <
0 )
destArray[l++] = gArray[i++];
else
destArray[l++] = gArray[j++];
}// case where second and third ranges have
// remaining values
while ((j <
mid2) &
&
(k <
high))
{
if (gArray[j].compareTo(gArray[k]) <
0 )
destArray[l++] = gArray[j++];
else
destArray[l++] = gArray[k++];
}// case where first and third ranges have
// remaining values
while ((i <
mid1) &
&
(k <
high))
{
if (gArray[i].compareTo(gArray[k]) <
0 )
destArray[l++] = gArray[i++];
else
destArray[l++] = gArray[k++];
}// copy remaining values from the first range
while (i <
mid1)
destArray[l++] = gArray[i++];
// copy remaining values from the second range
while (j <
mid2)
destArray[l++] = gArray[j++];
// copy remaining values from the third range
while (k <
high)
destArray[l++] = gArray[k++];
}// Driver function
public static void main(String args[])
{
// test case of values
Integer[] data = https://www.lsbin.com/new Integer[] { 45 , - 2 , - 45 , 78 , 30 , - 42 , 10 , 19 , 73 , 93 };
mergeSort3Way(data);
System.out.println("After 3 way merge sort: " );
for ( int i = 0 ;
i <
data.length;
i++)
System.out.print(data[i] + " " );
}
}
输出如下:
After 3 way merge sort: -45 -42 -2 10 19 30 45 73 78 93
在这里, 我们首先将数据数组的内容复制到另一个名为fArray的数组。然后, 通过找到将数组分为三部分的中点对数组进行排序, 并分别在每个数组上调用sort函数。递归的基本情况是当数组的大小为1且从函数返回时。然后开始合并数组, 最后将排序后的数组放入fArray中, 然后将其复制回gArray。
时间复杂度
:在进行2路合并排序的情况下, 我们得到以下公式:T(n)= 2T(n / 2)+ O(n)
类似地, 在三向合并排序的情况下, 我们得到以下等式:T(n)= 3T(n / 3)+ O(n)
通过使用解决
主法
, 我们得到它的复杂性
O(n对数
3
【如何实现3路合并排序(代码和算法实现)】n)。
。尽管与
2路合并排序
, 由于合并功能中的比较次数会增加, 因此实际花费的时间可能会更长。请参考
为什么二元搜索优于三元搜索?
有关详细信息。
类似文章:
3种快速排序
如果发现任何不正确的地方, 或者想分享有关上述主题的更多信息, 请写评论。
推荐阅读
- 3-Way快速排序(荷兰国旗算法)算法详细代码实现
- 用Java打印异常消息的3种不同方式
- Win8系统IE10添加flash支持的技巧
- Win8如何运用内置超级管理员账户登录系统?
- Win8下载商店应用时出错0x80200024的处理办法
- Win8系统Fresh Paint点击添加纸张后程序停止响应怎样办?
- Win8虚拟内存无法全部加载如何处理?
- Win8.1系统删除微软账户信息的办法
- Win8系统总是提示WiFi不可用如何应对?