本文概述
- C ++
- Java
- Python 3
- C#
- 的PHP
- CPP
【算法设计(求将给定重量装进袋子的最低成本)】找出购买W公斤橙子的最低总成本,如果不可能买到W公斤橙子,则打印-1。可以假设所有可用数据包类型都有无限的供应。
注意:数组从索引1开始。
例子:
Input: W = 5, cost[] = {20, 10, 4, 50, 100}
Output : 14
We can choose two oranges to minimize cost. First
orange of 2Kg and cost 10. Second orange of 3Kg
and cost 4. Input: W = 5, cost[] = {1, 10, 4, 50, 100}
Output : 5
We can choose five oranges of weight 1 kg.Input: W = 5, cost[] = {1, 2, 3, 4, 5}
Output : 5
Costs of 1, 2, 3, 4 and 5 kg packets are 1, 2, 3, 4 and 5 Rs respectively.
We choose packet of 5kg having cost 5 for minimum
cost to get 5Kg oranges.Input: W = 5, cost[] = {-1, -1, 4, 5, -1}
Output : -1
Packets of size 1, 2 and 5 kg are unavailable
because they have cost -1. Cost of 3 kg packet
is 4 Rs and of 4 kg is 5 Rs. Here we have only
weights 3 and 4 so by using these two we can
not make exactly W kg weight, therefore answer
is -1.
这个问题可以归结为无界背包问题。在cost数组中,我们首先忽略那些不可用的包; cost为-1,然后遍历cost数组并创建两个数组val[]用于存储' i ' kg数据包的成本,wt[]用于存储相应数据包的重量。假设成本[i] = 50,那么数据包的权重为i,成本为50。
算法:
- 创建矩阵min_cost [n + 1] [W + 1], 其中n是橘子的不同加权小包的数量, W是袋子的最大容量。
- 用INF(无穷大)初始化第0行, 用0初始化第0列。
- 现在填充矩阵
- 如果wt [i-1]> j, 则min_cost [i] [j] = min_cost [i-1] [j];
- 如果wt [i-1] < = j, 则min_cost [i] [j] = min(min_cost [i-1] [j], val [i-1] + min_cost [i] [j-wt [i-1 ]]);
- 如果min_cost [n] [W] == INF, 则输出将为-1, 因为这意味着我们无法使用这些权重来制造权重W, 否则输出将为min_cost [n] [W].
// C++ program to find minimum cost to get exactly
// W Kg with given packets
#include<
bits/stdc++.h>
#define INF 1000000
using namespace std;
// cost[] initial cost array including unavailable packet
// W capacity of bag
int MinimumCost( int cost[], int n, int W)
{
// val[] and wt[] arrays
// val[] array to store cost of 'i' kg packet of orange
// wt[] array weight of packet of orange
vector<
int >
val, wt;
// traverse the original cost[] array and skip
// unavailable packets and make val[] and wt[]
// array. size variable tells the available number
// of distinct weighted packets
int size = 0;
for ( int i=0;
i<
n;
i++)
{
if (cost[i]!= -1)
{
val.push_back(cost[i]);
wt.push_back(i+1);
size++;
}
}
n = size;
int min_cost[n+1][W+1];
// fill 0th row with infinity
for ( int i=0;
i<
=W;
i++)
min_cost[0][i] = INF;
// fill 0'th column with 0
for ( int i=1;
i<
=n;
i++)
min_cost[i][0] = 0;
// now check for each weight one by one and fill the
// matrix according to the condition
for ( int i=1;
i<
=n;
i++)
{
for ( int j=1;
j<
=W;
j++)
{
// wt[i-1]>
j means capacity of bag is
// less then weight of item
if (wt[i-1] >
j)
min_cost[i][j] = min_cost[i-1][j];
// here we check we get minimum cost either
// by including it or excluding it
else
min_cost[i][j] = min(min_cost[i-1][j], min_cost[i][j-wt[i-1]] + val[i-1]);
}
}
// exactly weight W can not be made by given weights
return (min_cost[n][W]==INF)? -1: min_cost[n][W];
}
// Driver program to run the test case
int main()
{
int cost[] = {1, 2, 3, 4, 5}, W = 5;
int n = sizeof (cost)/ sizeof (cost[0]);
cout <
<
MinimumCost(cost, n, W);
return 0;
}
Java
// Java Code for Minimum cost to
// fill given weight in a bag
import java.util.*;
class GFG {// cost[] initial cost array including
// unavailable packet W capacity of bag
public static int MinimumCost( int cost[], int n, int W)
{
// val[] and wt[] arrays
// val[] array to store cost of 'i' kg
// packet of orange wt[] array weight of
// packet of orange
Vector<
Integer>
val = new Vector<
Integer>
();
Vector<
Integer>
wt = new Vector<
Integer>
();
// traverse the original cost[] array and skip
// unavailable packets and make val[] and wt[]
// array. size variable tells the available
// number of distinct weighted packets
int size = 0 ;
for ( int i = 0 ;
i <
n;
i++)
{
if (cost[i] != - 1 )
{
val.add(cost[i]);
wt.add(i + 1 );
size++;
}
}n = size;
int min_cost[][] = new int [n+ 1 ][W+ 1 ];
// fill 0th row with infinity
for ( int i = 0 ;
i <
= W;
i++)
min_cost[ 0 ][i] = Integer.MAX_VALUE;
// fill 0'th column with 0
for ( int i = 1 ;
i <
= n;
i++)
min_cost[i][ 0 ] = 0 ;
// now check for each weight one by one and
// fill the matrix according to the condition
for ( int i = 1 ;
i <
= n;
i++)
{
for ( int j = 1 ;
j <
= W;
j++)
{
// wt[i-1]>
j means capacity of bag is
// less then weight of item
if (wt.get(i- 1 ) >
j)
min_cost[i][j] = min_cost[i- 1 ][j];
// here we check we get minimum cost
// either by including it or excluding
// it
else
min_cost[i][j] = Math.min(min_cost[i- 1 ][j], min_cost[i][j-wt.get(i- 1 )] +
val.get(i- 1 ));
}
}// exactly weight W can not be made by
// given weights
return (min_cost[n][W] == Integer.MAX_VALUE)? - 1 :
min_cost[n][W];
}/* Driver program to test above function */
public static void main(String[] args)
{
int cost[] = { 1 , 2 , 3 , 4 , 5 }, W = 5 ;
int n = cost.length;
System.out.println(MinimumCost(cost, n, W));
}
}
// This code is contributed by Arnav Kr. Mandal.
Python 3
# Python program to find minimum cost to get exactly
# W Kg with given packets
INF = 1000000
# cost[] initial cost array including unavailable packet
# W capacity of bag
def MinimumCost(cost, n, W):
# val[] and wt[] arrays
# val[] array to store cost of 'i' kg packet of orange
# wt[] array weight of packet of orange
val = list ()
wt = list ()
# traverse the original cost[] array and skip
# unavailable packets and make val[] and wt[]
# array. size variable tells the available number
# of distinct weighted packets.
size = 0
for i in range (n):
if (cost[i] ! = - 1 ):
val.append(cost[i])
wt.append(i + 1 )
size + = 1
n = size
min_cost = [[ 0 for i in range (W + 1 )] for j in range (n + 1 )]
# fill 0th row with infinity
for i in range (W + 1 ):
min_cost[ 0 ][i] = INF
# fill 0th column with 0
for i in range ( 1 , n + 1 ):
min_cost[i][ 0 ] = 0
# now check for each weight one by one and fill the
# matrix according to the condition
for i in range ( 1 , n + 1 ):
for j in range ( 1 , W + 1 ):
# wt[i-1]>
j means capacity of bag is
# less than weight of item
if (wt[i - 1 ] >
j):
min_cost[i][j] = min_cost[i - 1 ][j]
# here we check we get minimum cost either
# by including it or excluding it
else :
min_cost[i][j] = min (min_cost[i - 1 ][j], min_cost[i][j - wt[i - 1 ]] + val[i - 1 ])
# exactly weight W can not be made by given weights
if (min_cost[n][W] = = INF):
return - 1
else :
return min_cost[n][W]
# Driver program to run the test case
cost = [ 1 , 2 , 3 , 4 , 5 ]
W = 5
n = len (cost)
print (MinimumCost(cost, n, W))
# This code is contributed by Soumen Ghosh.
C#
// C# Code for Minimum cost to
// fill given weight in a bag
using System;
using System.Collections.Generic;
class GFG {// cost[] initial cost array including
// unavailable packet W capacity of bag
public static int MinimumCost( int []cost, int n, int W)
{
// val[] and wt[] arrays
// val[] array to store cost of 'i' kg
// packet of orange wt[] array weight of
// packet of orange
List<
int >
val = new List<
int >
();
List<
int >
wt = new List<
int >
();
// traverse the original cost[] array and skip
// unavailable packets and make val[] and wt[]
// array. size variable tells the available
// number of distinct weighted packets
int size = 0;
for ( int i = 0;
i <
n;
i++)
{
if (cost[i] != -1)
{
val.Add(cost[i]);
wt.Add(i + 1);
size++;
}
}n = size;
int [, ]min_cost = new int [n+1, W+1];
// fill 0th row with infinity
for ( int i = 0;
i <
= W;
i++)
min_cost[0, i] = int .MaxValue;
// fill 0'th column with 0
for ( int i = 1;
i <
= n;
i++)
min_cost[i, 0] = 0;
// now check for each weight one by one and
// fill the matrix according to the condition
for ( int i = 1;
i <
= n;
i++)
{
for ( int j = 1;
j <
= W;
j++)
{
// wt[i-1]>
j means capacity of bag is
// less then weight of item
if (wt[i-1] >
j)
min_cost[i, j] = min_cost[i-1, j];
// here we check we get minimum cost
// either by including it or excluding
// it
else
min_cost[i, j] = Math.Min(min_cost[i-1, j], min_cost[i, j-wt[i-1]] + val[i-1]);
}
}// exactly weight W can not be made by
// given weights
return (min_cost[n, W] == int .MaxValue )? -1: min_cost[n, W];
}/* Driver program to test above function */
public static void Main()
{
int []cost = {1, 2, 3, 4, 5};
int W = 5;
int n = cost.Length;
Console.WriteLine(MinimumCost(cost, n, W));
}
}
// This code is contributed by Ryuga
的PHP
<
?php
// PHP program to find minimum cost to
// get exactly W Kg with given packets
$INF = 1000000;
// cost[] initial cost array including
// unavailable packet W capacity of bag
function MinimumCost(&
$cost , $n , $W )
{
global $INF ;
// val[] and wt[] arrays
// val[] array to store cost of 'i'
// kg packet of orange
// wt[] array weight of packet of orange
$val = array ();
$wt = array ();
// traverse the original cost[] array
// and skip unavailable packets and
// make val[] and wt[] array. size
// variable tells the available number
// of distinct weighted packets
$size = 0;
for ( $i = 0;
$i <
$n ;
$i ++)
{
if ( $cost [ $i ] != -1)
{
array_push ( $val , $cost [ $i ]);
array_push ( $wt , $i + 1);
$size ++;
}
}
$n = $size ;
$min_cost = array_fill (0, $n + 1, array_fill (0, $W + 1, NULL));
// fill 0th row with infinity
for ( $i = 0;
$i <
= $W ;
$i ++)
$min_cost [0][ $i ] = $INF ;
// fill 0'th column with 0
for ( $i = 1;
$i <
= $n ;
$i ++)
$min_cost [ $i ][0] = 0;
// now check for each weight one by
// one and fill the matrix according
// to the condition
for ( $i = 1;
$i <
= $n ;
$i ++)
{
for ( $j = 1;
$j <
= $W ;
$j ++)
{
// wt[i-1]>
j means capacity of bag
// is less then weight of item
if ( $wt [ $i - 1] >
$j )
$min_cost [ $i ][ $j ] = $min_cost [ $i - 1][ $j ];
// here we check we get minimum
// cost either by including it
// or excluding it
else
$min_cost [ $i ][ $j ] = min( $min_cost [ $i - 1][ $j ], $min_cost [ $i ][ $j - $wt [ $i - 1]] +
$val [ $i - 1]);
}
}
// exactly weight W can not be made
// by given weights
if ( $min_cost [ $n ][ $W ] == $INF )
return -1;
else
return $min_cost [ $n ][ $W ];
}
// Driver Code
$cost = array (1, 2, 3, 4, 5);
$W = 5;
$n = sizeof( $cost );
echo MinimumCost( $cost , $n , $W );
// This code is contributed by ita_c
?>
输出如下:
5
空间优化解决方案
空间优化解如果我们仔细看一下这个问题,我们可能会注意到这是一个变化的棒材切割问题。这里我们要做的不是最大化,而是最小化。
CPP
// C++ program to find minimum cost to
// get exactly W Kg with given packets
#include<
bits/stdc++.h>
using namespace std;
/* Returns the best obtainable price for
a rod of length n and price[] as prices
of different pieces */
int minCost( int cost[], int n)
{
int dp[n+1];
dp[0] = 0;
// Build the table val[] in bottom up
// manner and return the last entry
// from the table
for ( int i = 1;
i<
=n;
i++)
{
int min_cost = INT_MAX;
for ( int j = 0;
j <
i;
j++)
min_cost = min(min_cost, cost[j] + dp[i-j-1]);
dp[i] = min_cost;
}return dp[n];
}
/* Driver program to test above functions */
int main()
{
int cost[] = {20, 10, 4, 50, 100};
int W = sizeof (cost)/ sizeof (cost[0]);
cout <
<
minCost(cost, W);
return 0;
}
输出如下:
14
本文作者:
沙尚克·米什拉(古鲁)
本文由lsbin团队审阅。
如果发现任何不正确的地方, 或者想分享有关上述主题的更多信息, 请写评论。
推荐阅读
- JavaScript基本语法介绍和用法指南
- 算法设计(第n个卡塔兰数算法实现)
- 在jQuery中如何检查元素是否隐藏()
- jQuery如何使用ajaxError()方法(代码示例)
- 背景效果(CSS背景属性用法示例)
- PHP如何使用Ds PriorityQueue copy()函数(示例)
- Express.js req.protocol属性的用法介绍
- U盘万能驱动_本文教您U盘驱动
- acer bios设置,本文教您宏碁笔记本怎样bios设置U盘打开