寸阳分阴须爱惜,休负春色与时光。这篇文章主要讲述Android-Universal-Image-Loader 学习笔记线程池分析相关的知识,希望能为你提供帮助。
UniveralImageLoader中的线程池
一般情况网络访问就需要App创建一个线程来执行(不然可能出现很臭的ANR),但是这也导致了当网络访问比较多的情况下,线程的数目可能指数增多,虽然android系统理论上说可以创建无数个线程,但是某一时间段,线程数的急剧增加可能导致系统OOM。
在UIL中引入了线程池这种技术来管理线程。合理利用线程池能够带来三个好处。
第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
第二:提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。
第三:提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。
当需要加载显示图片的时候,相关的task通过engine.submit(...)函数提交执行,那么submit之后发生了什么呢?engine是ImageLoaderEngine类的一个实例,他主要用来响应displayTask的执行。我们跟进ImageLoaderEngine中看看相关的字段和方法。[java]
view plain
copy
- class ImageLoaderEngine {
- final ImageLoaderConfiguration configuration;
- private Executor taskExecutor;
- private Executor taskExecutorForCachedImages;
- private Executor taskDistributor;
- private final Map< Integer, String> cacheKeysForImageAwares = Collections
- .synchronizedMap(new HashMap< Integer, String> ());
- private final Map< String, ReentrantLock> uriLocks = new WeakHashMap< String, ReentrantLock> ();
- private final AtomicBoolean paused = new AtomicBoolean(false);
- private final AtomicBoolean networkDenied = new AtomicBoolean(false);
- private final AtomicBoolean slowNetwork = new AtomicBoolean(false);
- private final Object pauseLock = new Object();
- ImageLoaderEngine(ImageLoaderConfiguration configuration) {
- this.configuration = configuration;
- taskExecutor = configuration.taskExecutor;
- taskExecutorForCachedImages = configuration.taskExecutorForCachedImages;
- taskDistributor = DefaultConfigurationFactory.createTaskDistributor();
- }
- /** Submits task to execution pool */
- void submit(final LoadAndDisplayImageTask task) {
- taskDistributor.execute(new Runnable() {
- @Override
- public void run() {
- File image = configuration.diskCache.get(task.getLoadingUri());
- boolean isImageCachedOnDisk = image != null & & image.exists();
- initExecutorsIfNeed();
- if (isImageCachedOnDisk) {
- taskExecutorForCachedImages.execute(task);
- } else {
- taskExecutor.execute(task);
- }
- }
- });
- }
- /** Submits task to execution pool */
- void submit(ProcessAndDisplayImageTask task) {
- initExecutorsIfNeed();
- taskExecutorForCachedImages.execute(task);
- }
- private void initExecutorsIfNeed() {
- if (!configuration.customExecutor & & ((ExecutorService) taskExecutor).isShutdown()) {
- taskExecutor = createTaskExecutor();
- }
- if (!configuration.customExecutorForCachedImages & & ((ExecutorService) taskExecutorForCachedImages)
- .isShutdown()) {
- taskExecutorForCachedImages = createTaskExecutor();
- }
- }
- private Executor createTaskExecutor() {
- return DefaultConfigurationFactory
- .createExecutor(configuration.threadPoolSize, configuration.threadPriority,
- configuration.tasksProcessingType);
- }
- /**
- * Returns URI of image which is loading at this moment into passed {@link com.nostra13.universalimageloader.core.imageaware.ImageAware}
- */
- String getLoadingUriForView(ImageAware imageAware) {
- return cacheKeysForImageAwares.get(imageAware.getId());
- }
- /**
- * Associates < b> memoryCacheKey< /b> with < b> imageAware< /b> . Then it helps to define image URI is loaded into View at
- * exact moment.
- */
- void prepareDisplayTaskFor(ImageAware imageAware, String memoryCacheKey) {
- cacheKeysForImageAwares.put(imageAware.getId(), memoryCacheKey);
- }
- /**
- * Cancels the task of loading and displaying image for incoming < b> imageAware< /b> .
- *
- * @param imageAware {@link com.nostra13.universalimageloader.core.imageaware.ImageAware} for which display task
- * will be cancelled
- */
- void cancelDisplayTaskFor(ImageAware imageAware) {
- cacheKeysForImageAwares.remove(imageAware.getId());
- }
- /**
- * Denies or allows engine to download images from the network.< br /> < br /> If downloads are denied and if image
- * isn‘t cached then {@link ImageLoadingListener#onLoadingFailed(String, View, FailReason)} callback will be fired
- * with {@link FailReason.FailType#NETWORK_DENIED}
- *
- * @param denyNetworkDownloads pass < b> true< /b> - to deny engine to download images from the network; < b> false< /b> -
- * to allow engine to download images from network.
- */
- void denyNetworkDownloads(boolean denyNetworkDownloads) {
- networkDenied.set(denyNetworkDownloads);
- }
- /**
- * Sets option whether ImageLoader will use {@link FlushedInputStream} for network downloads to handle < a
- * href="http://code.google.com/p/android/issues/detail?id=6066"> this known problem< /a> or not.
- *
- * @param handleSlowNetwork pass < b> true< /b> - to use {@link FlushedInputStream} for network downloads; < b> false< /b>
- * - otherwise.
- */
- void handleSlowNetwork(boolean handleSlowNetwork) {
- slowNetwork.set(handleSlowNetwork);
- }
- /**
- * Pauses engine. All new "load& display" tasks won‘t be executed until ImageLoader is {@link #resume() resumed}.< br
- * /> Already running tasks are not paused.
- */
- void pause() {
- paused.set(true);
- }
- /** Resumes engine work. Paused "load& display" tasks will continue its work. */
- void resume() {
- paused.set(false);
- synchronized (pauseLock) {
- pauseLock.notifyAll();
- }
- }
- /**
- * Stops engine, cancels all running and scheduled display image tasks. Clears internal data.
- * < br />
- * < b> NOTE:< /b> This method doesn‘t shutdown
- * {@linkplain com.nostra13.universalimageloader.core.ImageLoaderConfiguration.Builder#taskExecutor(java.util.concurrent.Executor)
- * custom task executors} if you set them.
- */
- void stop() {
- if (!configuration.customExecutor) {
- ((ExecutorService) taskExecutor).shutdownNow();
- }
- if (!configuration.customExecutorForCachedImages) {
- ((ExecutorService) taskExecutorForCachedImages).shutdownNow();
- }
- cacheKeysForImageAwares.clear();
- uriLocks.clear();
- }
- void fireCallback(Runnable r) {
- taskDistributor.execute(r);
- }
- ReentrantLock getLockForUri(String uri) {
- ReentrantLock lock = uriLocks.get(uri);
- if (lock == null) {
- lock = new ReentrantLock();
- uriLocks.put(uri, lock);
- }
- return lock;
- }
- AtomicBoolean getPause() {
- return paused;
- }
- Object getPauseLock() {
- return pauseLock;
- }
- boolean isNetworkDenied() {
- return networkDenied.get();
- }
- boolean isSlowNetwork() {
- return slowNetwork.get();
- }
- }
- private Executor taskExecutor;
- private Executor taskExecutorForCachedImages;
- private Executor taskDistributor;
[java] view plain copy
- /** Submits task to execution pool */
- void submit(final LoadAndDisplayImageTask task) {
- taskDistributor.execute(new Runnable() {
- @Override
- public void run() {
- File image = configuration.diskCache.get(task.getLoadingUri());
- boolean isImageCachedOnDisk = image != null & & image.exists();
- initExecutorsIfNeed();
- if (isImageCachedOnDisk) {
- taskExecutorForCachedImages.execute(task);
- } else {
- taskExecutor.execute(task);
- }
- }
- });
- }
- public interface Executor {
- void execute(Runnable var1);
- }
Executor executor = anExecutor;
executor.execute(new RunnableTask1());
executor.execute(new RunnableTask2());
...
通过Executor 对象将线程放入线程池中运行的。
taskExecutorForCachedImages、taskExecutor 在DefaultConfigurationFactory.createExecutor中被初始化成ThreadPoolExecutor类型的对象(这是默认情况)。需要注意的是,ThreadPoolExecutor其实是实现了ExecutorService接口的一个实体类。线程池实际表现为 ExecutorService 类的一個实例。通过使用 ExecutorService ,我们可以提交将在未来完成的任务。需要补充说明的是,ExecutorService继承自Executor接口。 [java] view plain copy
- if (taskExecutor == null) {
- taskExecutor = DefaultConfigurationFactory
- .createExecutor(threadPoolSize, threadPriority, tasksProcessingType);
- } else {
- customExecutor = true;
- }
- if (taskExecutorForCachedImages == null) {
- taskExecutorForCachedImages = DefaultConfigurationFactory
- .createExecutor(threadPoolSize, threadPriority, tasksProcessingType);
- } else {
- customExecutorForCachedImages = true;
- }
- public static Executor createExecutor(int threadPoolSize, int threadPriority,
- QueueProcessingType tasksProcessingType) {
- boolean lifo = tasksProcessingType == QueueProcessingType.LIFO;
- BlockingQueue< Runnable> taskQueue =
- lifo ? new LIFOLinkedBlockingDeque< Runnable> () : new LinkedBlockingQueue< Runnable> ();
- return new ThreadPoolExecutor(threadPoolSize, threadPoolSize, 0L, TimeUnit.MILLISECONDS, taskQueue,
- createThreadFactory(threadPriority, "uil-pool-"));
- }
[java] view plain copy
- public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime,
- TimeUnit unit, BlockingQueue< Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler)
创建一个ThreadPoolExecutor需要的参数:
- corePoolSize(线程池的基本大小):
- 当提交一个任务到线程池时,线程池会创建一个线程来执行任务,即使其他空闲的基本线程能够执行新任务也会创建线程,等到需要执行的任务数大于线程池基本大小时就不再创建。如果调用了线程池的prestartAllCoreThreads方法,线程池会提前创建并启动所有基本线程。
- runnableTaskQueue(任务队列):
-
用于保存等待执行的任务的阻塞队列。 可以选择以下几个阻塞队列。
- 1)ArrayBlockingQueue:
- 是一个基于数组结构的有界阻塞队列,此队列按 FIFO(先进先出)原则对元素进行排序。
- 2)LinkedBlockingQueue:
- 一个基于链表结构的阻塞队列,此队列按FIFO (先进先出) 排序元素,吞吐量通常要高于 ArrayBlockingQueue。静态工厂方法Executors.newFixedThreadPool()使用了这个队列。
- 3)SynchronousQueue:
- 一个不存储元素的阻塞队列。每个插入操作必须等到另一个线程调用移除操作,否则插入操作一直处于阻塞状态,吞吐量通常要高于LinkedBlockingQueue,静态工厂方法Executors.newCachedThreadPool使用了这个队列。
- 4)PriorityBlockingQueue:一个具有优先级的无限阻塞队列。
- maximumPoolSize(线程池最大大小):
- 线程池允许创建的最大线程数。如果队列满了,并且已创建的线程数小于最大线程数,则线程池会再创建新的线程执行任务。值得注意的是如果使用了无界的任务队列这个参数就没什么效果。
- ThreadFactory:
- 用于设置创建线程的工厂,可以通过线程工厂给每个创建出来的线程设置更有意义的名字。
- RejectedExecutionHandler(饱和策略):
-
当队列和线程池都满了,说明线程池处于饱和状态,那么必须采取一种策略处理提交的新任务。这个策略默认情况下是AbortPolicy,表示无法处理新任务时抛出异常。以下是JDK1.5提供的四种策略。
- 1)AbortPolicy:直接抛出异常。
- 2)CallerRunsPolicy:只用调用者所在线程来运行任务。
- 3)DiscardOldestPolicy:丢弃队列里最近的一个任务,并执行当前任务。
- 4)DiscardPolicy:不处理,丢弃掉。
- 当然也可以根据应用场景需要来实现RejectedExecutionHandler接口自定义策略。如记录日志或持久化不能处理的任务。
- keepAliveTime(线程活动保持时间):
- 线程池的工作线程空闲后,保持存活的时间。所以如果任务很多,并且每个任务执行的时间比较短,可以调大这个时间,提高线程的利用率。
- TimeUnit(线程活动保持时间的单位):
- 可选的单位有天(DAYS),小时(HOURS),分钟(MINUTES),毫秒(MILLISECONDS),微秒(MICROSECONDS, 千分之一毫秒)和毫微秒(NANOSECONDS, 千分之一微秒)。
要想合理的配置线程池,就必须首先分析任务特性,可以从以下几个角度来进行分析:
- 任务的性质:CPU密集型任务,IO密集型任务和混合型任务。
- 任务的优先级:高,中和低。
- 任务的执行时间:长,中和短。
- 任务的依赖性:是否依赖其他系统资源,如数据库连接。
CPU密集型任务配置尽可能小的线程,如配置Ncpu+1个线程的线程池。
IO密集型任务则由于线程并不是一直在执行任务,则配置尽可能多的线程,如2*Ncpu。
混合型的任务,如果可以拆分,则将其拆分成一个CPU密集型任务和一个IO密集型任务,只要这两个任务执行的时间相差不是太大,那么分解后执行的吞吐率要高于串行执行的吞吐率,如果这两个任务执行时间相差太大,则没必要进行分解。
我们可以通过Runtime.getRuntime().availableProcessors()方法获得当前设备的CPU个数。
优先级不同的任务可以使用优先级队列PriorityBlockingQueue来处理。
它可以让优先级高的任务先得到执行,需要注意的是如果一直有优先级高的任务提交到队列里,那么优先级低的任务可能永远不能执行。
执行时间不同的任务可以交给不同规模的线程池来处理,或者也可以使用优先级队列,让执行时间短的任务先执行。
依赖数据库连接池的任务,因为线程提交SQL后需要等待数据库返回结果,如果等待的时间越长CPU空闲时间就越长,那么线程数应该设置越大,这样才能更好的利用CPU。
建议使用有界队列,有界队列能增加系统的稳定性和预警能力,可以根据需要设大一点,比如几千。
【Android-Universal-Image-Loader 学习笔记线程池分析】
接下来,让我们看看UIL中线程池的配置。
文章图片
taskDistributor由于在每创建一个新的线程的时候都需要读取一下磁盘,属于IO操作。需要图片缓存的应用一般在需要加载图片的时候,同时创建很多(> 5)线程,这些线程一般来得猛去的也快,存活时间不必太长。 taskExecutor和taskExecutorForCachedImages涉及网络和磁盘的读取和写入操作,比较耗时。主线程数默认为3,实际上IO密集的操作应该定得高一点,以便合理利用CPU的。线程优先级(10为最高,1为最低)为4是比较合理的,因为这些操作只需要后台完成即可,优先级太高可能让界面失去响应。
推荐阅读
- Android第六天
- 安卓笔记20170118
- Android流行界面结构——Fragment通过ViewPager(带指示器)嵌套Fragment结构的创建方法详解
- Android群英传笔记——第五章(Android Scroll分析)
- Android学习——Fragment与Activity通信
- android 好的源码链接
- Android Java使用JavaMail API发送和接收邮件的代码示例
- 移动端UI设计越来越流行的高斯模糊(Gaussian blur)和毛玻璃效果(磨砂效果),如何使用Android RenderScript简单实现()
- android开发学习——day4