1.常用类库介绍
机器学习中我们经常要用到的类库如下:
- NumPy:是Python的一种开源数值计算扩展库,可用来存储和处理大型矩阵,提供了许多高级的数值编程工具, 如矩阵数据类型、矢量处理、精密的运算库,是?个运?速度?常快的数学库,主要?于数组计算。
- Pandas: 是?个强?的基于 NumPy 的分析结构化数据的?具集,是为了解决数据分析任务而创建的,?于数据挖掘和数据分析,同时也提供数据清洗功能。
- Matplotlib: Python中最著名 2D绘图库,十分适合交互式地进行制图。
- Sklearn:scikit-learn是Python 开发和实践机器学习的著名类库之一,基本功能主要分为六大部分 :分类、回归、聚类、数据降维、模型选择和数据预处理。依赖于类库NumPy ,SciPy 和 matplotlib 运行。
- Keras是一个运行在深度学习框架Tensorflow之上的简单易学的高级Python深度学习库,可以作为Tensorflow的高阶应用程序接口,进行深度学习模型的设计、调试、评估、应用和可视化。
- Anaconda 是最流?的数据分析平台,全球两千多万?在使?
- Anaconda 附带了??批常?数据科学包
- conda
- Python
- 150 多个科学包及其依赖项
- Anaconda 是在 conda(?个包管理器和环境管理器)上发展出来的
- Conda可以帮助你在计算机上安装和管理数据分析相关包
- Anaconda的仓库中包含了7000多个数据科学相关的开元库
- Anaconda 包含了虚拟环境管理?具
- 通过虚拟环境可以使不同的Python版本环境
- Anaconda 可?于多个平台:Windows、Mac OS X 和 Linux
文章图片
4.创建虚拟环境
虚拟环境的作?:很多开源库版本升级后API有变化,?版本的代码不能在新版本中运?,使用虚拟环境可以将不同Python版本、相同开源库的不同版本隔离。创建虚拟环境有两种方式
方式1:通过Anaconda界?创建虚拟环境
安装好Anaconda后,在开始菜单中选择Anaconda3然后点击Anaconda navigator,菜单打开Anaconda的管理?板,点击Environment选项卡,进?到环境管理界?,点击添加按钮选择python版本创建自己的虚拟环境,如图,选择python版本输入虚拟环境名称
文章图片
方式2:通过命令?创建虚拟环境
在开始菜单中选择Anaconda3然后点击菜单Aanaconda prompt打开Anaconda的命令窗口,使用以下命令管理虚拟环境。
- conda create -n 虚拟环境名字 python=python版本 #创建虚拟环境
- conda activate 虚拟环境名字 #进?虚拟环境
- conda deactivate 虚拟环境名字 #退出虚拟环境
- conda remove -n 虚拟环境名字 --all #删除虚拟环境
方式1:可以通过管理界?安装
打开Anaconda管理界面,点击Environment选项卡,进?到环境管理界?如图所示
文章图片
方式2:通过anaconda prompt命令安装
在开始菜单中选择Anaconda3然后点击菜单Aanaconda prompt打开Anaconda的命令窗口,使用以下命令安装。
- 通过conda install 安装
- conda install 包名字
- 通过pip install 安装
- pip install 包名字
- 安装时下载速度慢可以指定国内镜像地址
- 阿?云:https://mirrors.aliyun.com/pypi/simple/
- ?瓣:https://pypi.douban.com/simple/
- 清华?学:https://pypi.tuna.tsinghua.edu.cn/simple/
- 中国科学技术?学 http://pypi.mirrors.ustc.edu.cn/simple/
机器学习开发需要用到的常用类库在5.1小节中已经介绍,我们现在安装这些类库;
使用阿里云镜像和pip安装类包,打开anaconda prompt命令窗口,激活虚拟环境,进入虚拟环境后,进行安装输入以下命令:
>conda activate 虚拟环境名字
>pip install numpy matplotlib pandas scipy -i https://mirrors.aliyun.com/pypi/simple/
>pip install scikit-learn -i https://mirrors.aliyun.com/pypi/simple/
深度学习框架安装
【机器学习|机器学习入门(开发环境搭建)】深度学习框架有tensorflow,paddlepaddle等,她们都可以使用conda或者pip安装
这里我们安装tensorflow深度学习框架,可以选择使用conda或者pip安装
- 使用conda安装如下:
- 使用pip安装:
安装keras:
- 使用conda安装
- 使用pip安装
6.启动jupyter notebook
Jupyter Notebook(此前被称为 IPython notebook)Jupyter Notebook是基于python语言的,是一个交互式笔记本。Jupyter Notebook 的本质是一个 Web 应用程序,便于创建和共享文学化程序文档,支持实时代码,数学方程,可视化和 markdown。 用途包括:数据清理和转换,数值模拟,统计建模,机器学习等等
方式1:通过Anaconda启动 Jupyter Notebook
方式2:通过anaconda prompt终端启动
在开始菜单中选择Anaconda3然后点击菜单Aanaconda prompt打开Anaconda的命令窗口,进入到指定文件路径下,输入以下命令。
>activate 虚拟环境名字
>jupyter notebook
7.Jupyter notbook扩展组件配置
Jupyter notebook的扩展组件jupyter_contrib_nbextensions提供了代码提示补全功能,Jupyter notebook默认没有安装这个扩展组件,需要我们手动安装。
安装方法:在开始菜单中选择Anaconda3然后点击菜单Aanaconda prompt打开Anaconda的命令窗口,激活使用的虚拟环境进行安装,输入以下命令。
>activate 虚拟环境名字
>pip install jupyter_contrib_nbextensions -i https://mirrors.aliyun.com/pypi/simple/
>jupyter contrib nbextension install --user --skip-running-check
然后重启jupyter notebook后,进行以下操作
文章图片
8.pycharm
按照提示安装即可,做项目的话更适合用pycharm进行管理编辑调试,做数据分析实验等更适合用jupyternotebook
推荐阅读
- Python|Python函数式编程学习(lambda, map, reduce, filter)
- asyncio|asyncio 多线程附加协程,在一个线程内运行一个事件循环
- python学习|学习记录6
- 机器学习|【读书笔记】机器学习实战-决策树(1)
- 机器学习|【读书笔记】机器学习实战-决策树(2)
- python|BAT大厂都在用的Docker。学会这三招,面试、工作轻松hold住
- Python|8个无需编写代码即可使用Python内置库的方法
- Python|Python打开修图的最新方式,直男必学
- Python|【python量化】将Transformer模型用于股票价格预测