Python人脸识别考勤打卡系统
如需安装运行环境或远程调试,可加QQ905733049, 或QQ2945218359由专业技术人员远程协助!
运行结果如下:
主要代码:
import random
import cv2
import numpy
import datetime
import os
import time
import cv2 as cv
import numpy as np
import threading
from PIL import Image, ImageFont, ImageDrawdatabase_file_path = './resources/data.db'
picture_dir_path = "./resources/pictures"
trainer_file_path = './resources/Trainer/trainer.yml'
font_file_path = './resources/simsun.ttc'
zsc_circle_file_path = './resources/zsc.jpg'
zsc_rectangle_file_path = './resources/zsc.png'
haarcascade_frontalface_file_path = './resources/haarcascade_frontalface_default.xml'
capture_opt = 0# 摄像头参数,0,1为本机摄像头# 继承wx库里面的Frame类来使用
class MainFrame(wx.Frame):
def __init__(self):
# 初始化窗体数据
wx.Frame.__init__(self, None, -1, '人脸识别考勤系统', pos=(100, 100), size=(1337, 600))
panel = wx.Panel(self, -1)
sizer = wx.BoxSizer(wx.HORIZONTAL)
sizer1 = wx.BoxSizer(wx.VERTICAL)
sizer2 = wx.BoxSizer(wx.VERTICAL)
font = wx.Font(15, wx.ROMAN, wx.NORMAL, wx.BOLD)# 设置窗口以及托盘图标
icon = wx.Icon()
icon.CopyFromBitmap(wx.Bitmap(wx.Image((zsc_circle_file_path), wx.BITMAP_TYPE_JPEG)))
self.SetIcon(icon)# 设置左边背景学院logo
image = wx.Image(zsc_rectangle_file_path, wx.BITMAP_TYPE_PNG).ConvertToBitmap()
self.background = wx.StaticBitmap(panel, -1, bitmap=image, style=wx.ALIGN_CENTER)
sizer1.Add(self.background, proportion=10, flag=wx.ALIGN_CENTER, border=10)# 设置采集人脸按钮
self.command1 = wx.Button(panel, -1, '采集人脸')
self.command1.SetFont(font)
self.command1.SetBackgroundColour('#3299CC')
sizer1.Add(self.command1, proportion=5, flag=wx.ALL | wx.EXPAND, border=10)# 设置训练数据按钮
self.command2 = wx.Button(panel, -1, '训练数据')
self.command2.SetFont(font)
self.command2.SetBackgroundColour('#DBDB70')
sizer1.Add(self.command2, proportion=5, flag=wx.ALL | wx.EXPAND, border=10)# 设置人脸识别按钮
self.command3 = wx.Button(panel, -1, '识别打卡')
self.command3.SetFont(font)
self.command3.SetBackgroundColour('#32CC32')
sizer1.Add(self.command3, proportion=5, flag=wx.ALL | wx.EXPAND, border=10)# 设置退出系统按钮
self.command4 = wx.Button(panel, -1, '关闭摄像头')
self.command4.SetFont(font)
self.command4.SetBackgroundColour((random.randint(1, 255), random.randint(0, 255), random.randint(0, 255)))
sizer1.Add(self.command4, proportion=5, flag=wx.ALL | wx.EXPAND, border=10)# 设置消息提示文本
self.text5 = wx.StaticText(panel, -1, '\n\n', style=wx.ALIGN_CENTER)
self.text5.SetFont(font)
self.text5.SetForegroundColour('Red')
sizer1.Add(self.text5, proportion=15, flag=wx.ALL | wx.EXPAND, border=10)# 设置个人信息文本
self.text6 = wx.StaticText(panel, -1, '姓名:')
self.text7 = wx.StaticText(panel, -1, '学号:')
self.text8 = wx.StaticText(panel, -1, '学院:')
sizer1.Add(self.text6, proportion=3, flag=wx.LEFT, )
sizer1.Add(self.text7, proportion=3, flag=wx.LEFT, )
sizer1.Add(self.text8, proportion=3, flag=wx.LEFT, )# 把分布局全部加入整体顶级布局
sizer.Add(sizer1, flag=wx.EXPAND | wx.ALL, border=20)# 设置右上边消息提示文本
sizer3 = wx.BoxSizer(wx.HORIZONTAL)
font = wx.Font(12, wx.ROMAN, wx.NORMAL, wx.BOLD)
self.text9 = wx.StaticText(panel, -1, '', style=wx.ALIGN_LEFT)
self.text9.SetFont(font)
self.text9.SetForegroundColour('brown')
self.text9.SetLabel(u''+'您好,欢迎使用人脸考勤系统!')self.text10 = wx.StaticText(panel, -1, '', style=wx.ALIGN_RIGHT)
self.text10.SetFont(font)
self.text10.SetForegroundColour('Blue')
self.data_num = 0
self.updateSumData()
sizer3.Add(self.text9, proportion=1, flag= wx.ALL|wx.EXPAND, border=10)
sizer3.Add(self.text10, proportion=1, flag= wx.ALL|wx.EXPAND, border=10)sizer2.Add(sizer3, proportion=1, flag=wx.EXPAND | wx.ALL, )# 封面图片
self.image_cover = wx.Image(zsc_circle_file_path, wx.BITMAP_TYPE_ANY).Scale(575, 460)
self.bmp = wx.StaticBitmap(panel, -1, wx.Bitmap(self.image_cover))
sizer2.Add(self.bmp, proportion=1, flag=wx.ALL|wx.EXPAND ,)# 加入顶级布局
sizer.Add(sizer2, flag=wx.EXPAND | wx.ALL, border=10)# 实例化数据库操作对象
self.mySqlDao = MySQLDao(self)
self.grid = MyGrid(panel, self.mySqlDao)
self.grid.updateGrid()
# 打卡记录表
sizer.Add(self.grid, proportion=1, flag=wx.EXPAND | wx.ALL, border=10)panel.SetSizer(sizer)# 四个按钮对应的事件
self.command1.Bind(wx.EVT_BUTTON, self.command1_event)
self.command4.Bind(wx.EVT_BUTTON, self.command4_event)
self.command3.Bind(wx.EVT_BUTTON, self.command3_event)
self.command2.Bind(wx.EVT_BUTTON, self.command2_event)# 关闭事件
self.Bind(wx.EVT_CLOSE,self.onClose)# 窗口居中,显示
self.Center()
self.Show()# 控制摄像头的开启与关闭
self.recognition = False
self.collected = False'''
主窗体关闭事件
'''
def onClose(self,event):
self.command4_event(event)
# 等待子线程完成 再关闭,防止不正常退出
time.sleep(1)
self.Destroy()'''
采集数据按钮的响应事件
'''
def command1_event(self, event):
self.text6.SetLabel('姓名:')
self.text7.SetLabel('学号:')
self.text8.SetLabel('学院:')
self.text5.SetLabel(u'\n温馨提示:\n' + '?正在进学生信息录入...')
self.text5.Update()collectFrame = CollectFrame(self,self.mySqlDao)
collectFrame.Show()'''
训练数据按钮的响应事件
'''
def command2_event(self, event):
self.trainData()'''
识别打卡按钮的响应事件
'''
def command3_event(self, event):
self.text5.SetLabel(u'')
self.recognition = False
t1 = threading.Thread(target=self.recognitionFace)
t1.start()'''
关闭摄像头按钮的响应事件
'''
def command4_event(self, event):
if self.collected == False:
self.collected = True
if self.recognition == False:
self.recognition = Truedef updateSumData(self):
self.data_num = 0
for list in os.listdir(picture_dir_path):
if len(os.listdir(picture_dir_path + '/' + list)) >= 200:
self.data_num += 1
self.text10.SetLabel(u'当前已采集人脸数据的人数:' + str(self.data_num))
self.text10.Update()'''
@Author:Himit_ZH
@Function:处理收集人脸每一帧生成图片存入对应文件夹
'''
def collect(self,face_id):self.text5.SetLabel(u'\n温馨提示:\n' + '请看向摄像头\n准备采集200张人脸图片...')count = 0# 统计照片数量
path = picture_dir_path+"/Stu_" + str(face_id)# 人脸图片数据的储存路径
# 读取视频
cap = cv.VideoCapture(capture_opt)
print(cap.isOpened())
if cap.isOpened() == False:
self.text5.SetLabel(u'\n错误提示:\n' + '×采集人脸数据失败!\n原因:未能成功打开摄像头')
return# 加载特征数据
face_detector = cv.CascadeClassifier(haarcascade_frontalface_file_path)
if not os.path.exists(path):# 如果没有对应文件夹,自动生成
os.makedirs(path)
while self.collected == False:
flag, frame = cap.read()
# print('flag:',flag,'frame.shape:',frame.shape)
if not flag:
break
# 将图片灰度
gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
faces = face_detector.detectMultiScale(gray, 1.1, 3)
if len(faces) > 1:# 一帧出现两张照片丢弃,原因:有人乱入,也有可能人脸识别出现差错
continue
# 框选人脸,for循环保证一个能检测的实时动态视频流
for x, y, w, h in faces:
cv.rectangle(frame, (x, y), (x + w, y + h), color=(0, 255, 0), thickness=2)
count += 1
cv.imwrite(path + '/' + str(count) + '.png', gray[y:y + h, x:x + w])
# # 显示图片
# cv.imshow('Camera', frame)
# 将一帧帧图片显示在UI中
image1 = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image2 = cv2.resize(image1, (575, 460))
height, width = image2.shape[:2]
pic = wx.Bitmap.FromBuffer(width, height, image2)
# 显示图片在panel上
self.bmp.SetBitmap(pic)
self.bmp.Update()self.text9.SetLabel(u'温馨提示:\n' + '已采集'+ str(count)+'张人脸照片')
if count >= 200:#默认采集200张照片
break
# 关闭资源
if count >=200:
self.text5.SetLabel(u'\n温馨提示:\n' + '?已成功采集到人脸数据!')
self.updateSumData()
else:
self.text5.SetLabel(u'\n错误提示:\n' + '×采集人脸数据失败!\n未能收集到200张人脸数据!')
# 删除该文件夹下的所有数据
ls = os.listdir(path)
for file_path in ls:
f_path = os.path.join(path, file_path)
os.remove(f_path)
os.rmdir(path)cv.destroyAllWindows()
cap.release()
self.bmp.SetBitmap(wx.Bitmap(self.image_cover))'''
@Author:Himit_ZH
@Function:遍历指定文件夹里面的人脸数据,根据文件夹名字,训练对应数据
'''
def trainData(self):
self.text5.SetLabel(u'\n温馨提示:\n' + '?正在整合训练的人脸数据\n请稍后...')
# 图片路径
path = picture_dir_path
facesSamples = []
imageFiles = []
ids = []
for root, dirs, files in os.walk(path):
# root 表示当前正在访问的文件夹路径
# dirs 表示该文件夹下的子目录名list
# files 表示该文件夹下的文件list
# 遍历文件
for file in files:
imageFiles.append(os.path.join(root, file))
# 检测人脸的模型数据
face_detector = cv2.CascadeClassifier(haarcascade_frontalface_file_path)
# 遍历列表中的图片
stu_map =self.mySqlDao.getIdfromSql()
for imagefile in imageFiles:# 获得所有文件名字
imagefile = imagefile.replace('\\', '/')
sno = imagefile.split('/')[3].split('_')[1]
if stu_map.get(sno):
PIL_img = Image.open(imagefile).convert('L')# 打开图片并且转为灰度图片
# 将图像转换为数组
img_numpy = np.array(PIL_img, 'uint8')
faces = face_detector.detectMultiScale(img_numpy)
for x, y, w, h in faces:
facesSamples.append(img_numpy[y:y + h, x:x + w])
ids.append(int(stu_map.get(sno)))if __name__ == '__main__':
app = wx.App()
app.locale = wx.Locale(wx.LANGUAGE_CHINESE_SIMPLIFIED)
frame = MainFrame()
app.MainLoop()
运行结果如下:
Python, C++, PHP语言学习参考实例连接:
C++学习参考实例:
C++实现图形界面五子棋游戏源码:
https://blog.csdn.net/alicema1111/article/details/90035420
C++实现图形界面五子棋游戏源码2:
https://blog.csdn.net/alicema1111/article/details/106479579
C++ OpenCV相片视频人脸识别统计人数:
https://blog.csdn.net/alicema1111/article/details/105833928
VS2017+PCL开发环境配置:
https://blog.csdn.net/alicema1111/article/details/106877145
VS2017+Qt+PCL点云开发环境配置:
https://blog.csdn.net/alicema1111/article/details/105433636
C++ OpenCV汽车检测障碍物与测距:
https://blog.csdn.net/alicema1111/article/details/105833449
Windows VS2017安装配置PCL点云库:
https://blog.csdn.net/alicema1111/article/details/105111110
VS+VTK+Dicom(dcm)+CT影像切片窗体界面显示源码
https://blog.csdn.net/alicema1111/article/details/106994839
Python学习参考实例:
Python相片更换背景颜色qt窗体程序:
https://blog.csdn.net/alicema1111/article/details/106919140
OpenCV汽车识别检测数量统计:
https://blog.csdn.net/alicema1111/article/details/106597260
OpenCV视频识别检测人数跟踪统计:
https://blog.csdn.net/alicema1111/article/details/106113042
OpenCV米粒检测数量统计:
https://blog.csdn.net/alicema1111/article/details/106089697
opencv人脸识别与变形哈哈镜:
https://blog.csdn.net/alicema1111/article/details/105833123
OpenCV人脸检测打卡系统:
https://blog.csdn.net/alicema1111/article/details/105315066
Python+OpenCV摄像头人脸识别:
https://blog.csdn.net/alicema1111/article/details/105107286
Python+Opencv识别视频统计人数:
https://blog.csdn.net/alicema1111/article/details/103804032
Python+OpenCV图像人脸识别人数统计:
https://blog.csdn.net/alicema1111/article/details/105378639
python人脸头发身体部位识别人数统计:
https://blog.csdn.net/alicema1111/article/details/116424942
VS+QT+VTK三维网格图像显示GUI
https://blog.csdn.net/alicema1111/article/details/117060734
PHP网页框架:
PHP Laravel框架安装与配置后台管理前台页面显示:
【Python|Python人脸识别考勤打卡系统】https://blog.csdn.net/alicema1111/article/details/106686523
推荐阅读
- QT学习之路|【qt+opencv】实现人脸识别打卡系统2.0
- 环境配置|windows中pyspark的配置
- python 包之 pywin32 操控 windows 系统教程
- windows|惊现 Windows 11 “隐藏版”!网友(微软为何要让学生受这种苦())
- 工程能力|模拟QQ软件的基于多线程的流媒体加密传输软件技术
- YOLOV5|2021电赛F题视觉教程+代码免费开源
- OpenCV学习笔记--颜色空间及转换
- python|基于python的opencv计算机视觉基础知识及例程代码【视觉入门看这一篇就够了】
- python如何实现网络测试,了解一下speedtest-cli...