BlockCanary源码解析

BlockCanary源码解析
在讲解BlockCanary源码之前,我们还是需要将一些前置的知识点。本文不讲Handler的原理了,不太懂的同学自己去百度看一下吧。
什么是卡顿 在讲解卡顿问题之前,我们需要讲一下帧率这个概念。帧率是以帧称为单位的位图图像连续出现在显示器上的频率。我将一个例子,电影播放。电影其实就是很多张照片(帧)的一个集合,那为什么看起来是一个连续的过程呢?因为电影每一秒出现过的图片不止一张。实际上电影一般一秒出现的图片张数会在20-30张。假设电影一秒出现了24张图片,那么这个电影的帧率就是24。帧率就是一秒中,出现了多少帧。
知道了什么是帧率,那么问题来了,为什么会出现卡顿呢?卡顿在我们的视觉上面的表现就是原本是流畅的动画画面,现在变的不流畅了。我们上面讲过,动画其实是由很多图片构成。如果在一个24帧的电影中,突然有一秒钟,在这一秒钟出现了掉帧。也就是原本0...23的图片变成了 0...10...12...23.中间的某一帧没有渲染出来,那么这个在我们视觉上就会出现不流畅的现象。也就是卡顿的现象。上面就是电影上出现卡顿的现象。那么在我们android系统上呢?
Android渲染机制 在高刷手机没有出现之前,我们手机屏幕的帧率是60。就是意味着1秒钟会有60个画面出现。那么也就是16ms就要有一个画面渲染。**Android系统每隔16ms发出VSYNC信号,触发对UI进行渲染, 如果每次渲染都成功,这样就能够达到流畅的画面所需要的60帧,为了能够实现60fps,这意味着程序的大多数操作都必须在16ms内完成。如果超过了16ms那么可能就出现丢帧的情况。**如果掉帧的频率很高,也就是导致卡顿的情况。
BlockCanary源码解析 那么在android中,BlockCanary是怎么帮助我们去做卡顿检测的呢。今天我们就来讲解一下BlockCanary检测卡顿的原理。
一般我们都通过以下的代码方式去开启我们的卡顿检测。

public class DemoApplication extends Application { @Override public void onCreate() { // ... // Do it on main process BlockCanary.install(this, new AppBlockCanaryContext()).start(); } }

这段代码主要有两部分,一部分是install,一部分是start。我们先看install部分
install阶段 BlockCanary#install()
public static BlockCanary install(Context context, BlockCanaryContext blockCanaryContext) { //BlockCanaryContext.init会将保存应用的applicationContext和用户设置的配置参数 BlockCanaryContext.init(context, blockCanaryContext); //etEnabled将根据用户的通知栏消息配置开启 setEnabled(context, DisplayActivity.class, BlockCanaryContext.get().displayNotification()); return get(); }

BlockCanary#get()
//使用单例创建了一个BlockCanary对象 public static BlockCanary get() { if (sInstance == null) { synchronized (BlockCanary.class) { if (sInstance == null) { sInstance = new BlockCanary(); } } } return sInstance; }

BlockCanary()
private BlockCanary() { //初始化blockCanaryInternals调度类 BlockCanaryInternals.setContext(BlockCanaryContext.get()); mBlockCanaryCore = BlockCanaryInternals.getInstance(); //为BlockCanaryInternals添加拦截器(责任链)BlockCanaryContext对BlockInterceptor是空实现 mBlockCanaryCore.addBlockInterceptor(BlockCanaryContext.get()); if (!BlockCanaryContext.get().displayNotification()) { return; } //DisplayService只在开启通知栏消息的时候添加,当卡顿发生时将通过DisplayService发起通知栏消息 mBlockCanaryCore.addBlockInterceptor(new DisplayService()); }

BlockCanaryInternals.getInstance()
static BlockCanaryInternals getInstance() { if (sInstance == null) { synchronized (BlockCanaryInternals.class) { if (sInstance == null) { sInstance = new BlockCanaryInternals(); } } } return sInstance; }

BlockCanaryInternals
public BlockCanaryInternals() { //初始化栈采集器 stackSampler = new StackSampler( Looper.getMainLooper().getThread(), sContext.provideDumpInterval()); //初始化cpu采集器 cpuSampler = new CpuSampler(sContext.provideDumpInterval()); //初始化LooperMonitor,并实现了onBlockEvent的回调,该回调会在触发阈值后被调用,这里面比较重要 setMonitor(new LooperMonitor(new LooperMonitor.BlockListener() {@Override public void onBlockEvent(long realTimeStart, long realTimeEnd, long threadTimeStart, long threadTimeEnd) { ArrayList threadStackEntries = stackSampler .getThreadStackEntries(realTimeStart, realTimeEnd); if (!threadStackEntries.isEmpty()) { BlockInfo blockInfo = BlockInfo.newInstance() .setMainThreadTimeCost(realTimeStart, realTimeEnd, threadTimeStart, threadTimeEnd) .setCpuBusyFlag(cpuSampler.isCpuBusy(realTimeStart, realTimeEnd)) .setRecentCpuRate(cpuSampler.getCpuRateInfo()) .setThreadStackEntries(threadStackEntries) .flushString(); LogWriter.save(blockInfo.toString()); if (mInterceptorChain.size() != 0) { for (BlockInterceptor interceptor : mInterceptorChain) { interceptor.onBlock(getContext().provideContext(), blockInfo); } } } } }, getContext().provideBlockThreshold(), getContext().stopWhenDebugging())); LogWriter.cleanObsolete(); }

当install进行初始化完成后,接着会调用start()方法,实现如下:
start阶段 BlockCanary#start()
//BlockCanary#start() public void start() { if (!mMonitorStarted) { mMonitorStarted = true; //把mBlockCanaryCore中的monitor设置MainLooper中进行监听 Looper.getMainLooper().setMessageLogging(mBlockCanaryCore.monitor); } }

这里面的实现也比较简单,就是获取到主线程Looper然后将上一步创建的LooperMonitor设置到主线程Looper里面的MessageLogging。
到这里然后呢?卧槽,没了一开始看这里的源码的时候我也是很懵逼的。然后我就去github上看了,然后呢,我看到了这么一张图。
BlockCanary源码解析
文章图片

通过这张图,我可以知道,真正开始检测的不是start(),而是Looper里面loop()函数
Looper#loop
public static void loop() { final Looper me = myLooper(); if (me == null) { throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread."); } if (me.mInLoop) { Slog.w(TAG, "Loop again would have the queued messages be executed" + " before this one completed."); }me.mInLoop = true; final MessageQueue queue = me.mQueue; // Make sure the identity of this thread is that of the local process, // and keep track of what that identity token actually is. Binder.clearCallingIdentity(); final long ident = Binder.clearCallingIdentity(); // Allow overriding a threshold with a system prop. e.g. // adb shell 'setprop log.looper.1000.main.slow 1 && stop && start' final int thresholdOverride = SystemProperties.getInt("log.looper." + Process.myUid() + "." + Thread.currentThread().getName() + ".slow", 0); boolean slowDeliveryDetected = false; for (; ; ) { Message msg = queue.next(); // might block if (msg == null) { // No message indicates that the message queue is quitting. return; }// This must be in a local variable, in case a UI event sets the logger final Printer logging = me.mLogging; if (logging != null) { logging.println(">>>>> Dispatching to " + msg.target + " " + msg.callback + ": " + msg.what); } // Make sure the observer won't change while processing a transaction. final Observer observer = sObserver; final long traceTag = me.mTraceTag; long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs; long slowDeliveryThresholdMs = me.mSlowDeliveryThresholdMs; if (thresholdOverride > 0) { slowDispatchThresholdMs = thresholdOverride; slowDeliveryThresholdMs = thresholdOverride; } final boolean logSlowDelivery = (slowDeliveryThresholdMs > 0) && (msg.when > 0); final boolean logSlowDispatch = (slowDispatchThresholdMs > 0); final boolean needStartTime = logSlowDelivery || logSlowDispatch; final boolean needEndTime = logSlowDispatch; if (traceTag != 0 && Trace.isTagEnabled(traceTag)) { Trace.traceBegin(traceTag, msg.target.getTraceName(msg)); }final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0; final long dispatchEnd; Object token = null; if (observer != null) { token = observer.messageDispatchStarting(); } long origWorkSource = ThreadLocalWorkSource.setUid(msg.workSourceUid); try { msg.target.dispatchMessage(msg); if (observer != null) { observer.messageDispatched(token, msg); } dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0; } catch (Exception exception) { if (observer != null) { observer.dispatchingThrewException(token, msg, exception); } throw exception; } finally { ThreadLocalWorkSource.restore(origWorkSource); if (traceTag != 0) { Trace.traceEnd(traceTag); } } if (logSlowDelivery) { if (slowDeliveryDetected) { if ((dispatchStart - msg.when) <= 10) { Slog.w(TAG, "Drained"); slowDeliveryDetected = false; } } else { if (showSlowLog(slowDeliveryThresholdMs, msg.when, dispatchStart, "delivery", msg)) { // Once we write a slow delivery log, suppress until the queue drains. slowDeliveryDetected = true; } } } if (logSlowDispatch) { showSlowLog(slowDispatchThresholdMs, dispatchStart, dispatchEnd, "dispatch", msg); }if (logging != null) { logging.println("<<<<< Finished to " + msg.target + " " + msg.callback); }// Make sure that during the course of dispatching the // identity of the thread wasn't corrupted. final long newIdent = Binder.clearCallingIdentity(); if (ident != newIdent) { Log.wtf(TAG, "Thread identity changed from 0x" + Long.toHexString(ident) + " to 0x" + Long.toHexString(newIdent) + " while dispatching to " + msg.target.getClass().getName() + " " + msg.callback + " what=" + msg.what); }msg.recycleUnchecked(); } }

loop()里面的代码很长,我们讲解blockCanary的时候不需要过分关注其他部分,还记得我们start做的事情吗,我们去设置了setMessageLogging。所以先看看setMessageLogging方法
Looper#setMessageLogging
public void setMessageLogging(@Nullable Printer printer) { mLogging = printer; }

其实就是将创建的LooperMonitor赋值给mLogging,那么我们只需要关注mLogging在loop()中的代码就好了。我们发现就是调用了两次println。一个是在msg.target.dispatchMessage(msg)之前,一个是在msg.target.dispatchMessage(msg)之后。也就是说这两次调用,一次是处理信号之前,一个是处理信号之后。那么通过实现LooperMonitor里面的println方法,我们就可以得出一些时间差。所以,接下来我们要看的是LooperMonitor里面的println方法
MainLooper#println()
//MainLooper#println() @Override public void println(String x) { //如果再debug模式,不执行监听 if (mStopWhenDebugging && Debug.isDebuggerConnected()) { return; } if (!mPrintingStarted) {//dispatchMesage前执行的println //记录开始时间 mStartTimestamp = System.currentTimeMillis(); mStartThreadTimestamp = SystemClock.currentThreadTimeMillis(); mPrintingStarted = true; //开始采集栈及cpu信息 startDump(); } else {//dispatchMesage后执行的println //获取结束时间 final long endTime = System.currentTimeMillis(); mPrintingStarted = false; //判断耗时是否超过阈值 if (isBlock(endTime)) { notifyBlockEvent(endTime); } stopDump(); } }//判断是否超过阈值 private boolean isBlock(long endTime) { return endTime - mStartTimestamp > mBlockThresholdMillis; //这个阈值是我们自己设置的 }//如果超过阈值,回调卡顿的监听,说明卡顿了 private void notifyBlockEvent(final long endTime) { final long startTime = mStartTimestamp; final long startThreadTime = mStartThreadTimestamp; final long endThreadTime = SystemClock.currentThreadTimeMillis(); HandlerThreadFactory.getWriteLogThreadHandler().post(new Runnable() { @Override public void run() { mBlockListener.onBlockEvent(startTime, endTime, startThreadTime, endThreadTime); } }); }

【BlockCanary源码解析】其实这里卡顿检测的源码也还是比较简单的,它的原理就是通过重新实现looper里面的logging,然后通过println函数去判断有没有出现卡顿。BlockCanary的流程图在上面也出现了。所以这篇博客也就写道这里吧。希望对大家,对于卡顿的理解有一定的帮助。

    推荐阅读