[学习笔记] CS131 Computer Vision: Foundations and Applications(Lecture 2 颜色和数学基础)
亦余心之所善兮,虽九死其犹未悔。这篇文章主要讲述[学习笔记] CS131 Computer Vision: Foundations and Applications:Lecture 2 颜色和数学基础相关的知识,希望能为你提供帮助。
大纲
文章图片
what is color?
- The result of interaction between physical light in the environment and our visual system.
- A psychological property of our visual experiences when we look at objects and lights, not a physical property of those objects or lights.
文章图片
Color Spaces
- linear space: RGB/CIE XYZ
- nolinear space: HSV
- color histogram for indexing and retrieval
- skin detection
- nude people detection
- image segmentation and retrieval
- build apperance models for tracking
- ...
1. 向量
列向量:$v \\in R^{n*1} v = \\begin{bmatrix} v_1 \\\\ v_2\\\\ \\cdot \\\\ \\cdot \\\\ \\cdot \\\\ v_n \\end{bmatrix}$
行向量:$v^T \\in R^{1*n} v^T = [v_1 v_2 ... v_n]$ (T转置运算符)
向量使用:点的空间表示;表示数据,没有空间意义,但是计算仍然有意义
2. 矩阵
矩阵运算:addition, scaling
矩阵范数:
one norm:$||x||_1 = \\sum_{i=1}^n |x_i| $
two norm:$||x||_2 = \\sqrt{\\sum_{i=1}^n x_i^2}
infinity norm: $||x||_inf = max |x_i|$
general P norm:||x||_p = (\\sum_{i=1}^n x_i^p)^1/p$
matrix norm:||A||_F = \\sqrt{\\sum_{i=1}^m \\sum_{j = 1}^n A_ij^2 = \\sqrt{tr(A^TA)}$
矩阵的秩:
- $det(AB) = det(BA)$
- $det(A^-1) = \\frac{1}{\\det(A)}$
- $det(A^T) = det(A)$
- $det(A) = 0$ 当且仅当$A$是奇异的
【[学习笔记] CS131 Computer Vision: Foundations and Applications(Lecture 2 颜色和数学基础)】特殊矩阵:
- 单位矩阵(Identity Matrix):对角元素为0,其他元素为1
- 对角矩阵(diagonal matrix):非对角元素为0
- 对称矩阵(Symmetric Matrix):$A^T = A$
- 反对称矩阵(Skew-symmetric Matrix) $A^T = -A$
推荐阅读
- 常用的Android关键词定位方法
- CL0940-全网稀缺Vue 2.0高级实战 独立开发专属音乐WebAPP
- App流量测试--使用安卓自身提供的TCP收发长度统计功能
- cannot resolve symbol AppCompatActivity 心得
- Android集成开发环境搭建
- Win 8系统相机访问本地照片提示“现在无法访问本机照片”怎样办
- Win8系统显示器颜色异常出现严重偏色的原因及处理措施
- win8系统打开office 2013提示“Microsoft Word已停止工作"怎样办
- win8系统怎样打开eml格式的文件【图文详细教程】