本文概述
- 从数组中找到最小和最大元素
- numpy.ptp()函数
- numpy.percentile()函数
- 计算数组项的中位数, 均值和平均值
- numpy.median()函数
- numpy.mean()函数
- numpy.average()函数
从数组中找到最小和最大元素numpy.amin()和numpy.amax()函数用于分别沿着指定轴查找数组元素的最小和最大值。
考虑以下示例。
例子
import numpy as npa = np.array([[2, 10, 20], [80, 43, 31], [22, 43, 10]])print("The original array:\n")
print(a)print("\nThe minimum element among the array:", np.amin(a))
print("The maximum element among the array:", np.amax(a))print("\nThe minimum element among the rows of array", np.amin(a, 0))
print("The maximum element among the rows of array", np.amax(a, 0))print("\nThe minimum element among the columns of array", np.amin(a, 1))
print("The maximum element among the columns of array", np.amax(a, 1))
输出
The original array:[[ 2 10 20]
[80 43 31]
[22 43 10]]The minimum element among the array: 2
The maximum element among the array: 80The minimum element among the rows of array [ 2 10 10]
The maximum element among the rows of array [80 43 31]The minimum element among the columns of array [ 2 31 10]
The maximum element among the columns of array [20 80 43]
numpy.ptp()函数函数numpy.ptp()的名称是从峰峰值得到的。用于返回沿轴的值范围。考虑以下示例。
例子
import numpy as npa = np.array([[2, 10, 20], [80, 43, 31], [22, 43, 10]])print("Original array:\n", a)print("\nptp value along axis 1:", np.ptp(a, 1))print("ptp value along axis 0:", np.ptp(a, 0))
输出
Original array:
[[ 2 10 20]
[80 43 31]
[22 43 10]]ptp value along axis 1: [18 49 33]
ptp value along axis 0: [78 33 21]
numpy.percentile()函数下面给出了使用该函数的语法。
numpy.percentile(input, q, axis)
它接受以下参数。
- 输入:这是输入数组。
- q:是数组元素计算得出的百分位数(1-100)。
- axis:这是要沿其计算百分位数的轴。
例子
import numpy as npa = np.array([[2, 10, 20], [80, 43, 31], [22, 43, 10]])print("Array:\n", a)print("\nPercentile along axis 0", np.percentile(a, 10, 0))print("Percentile along axis 1", np.percentile(a, 10, 1))
输出
Array:
[[ 2 10 20]
[80 43 31]
[22 43 10]]Percentile along axis 0 [ 6.16.6 12. ]
Percentile along axis 1 [ 3.6 33.4 12.4]
计算数组项的中位数, 均值和平均值numpy.median()函数中值定义为用于将较高范围的数据样本与较低范围的数据样本分开的值。函数numpy.median()用于计算多维或一维数组的中位数。
numpy.mean()函数均值可以通过将数组的所有项相加除以数组元素的数量来计算。我们还可以提及可以计算平均值的轴。
numpy.average()函数numpy.average()函数用于查找多维数组的轴上的加权平均值, 在多维数组中它们的权重在另一个数组中给出。
【NumPy统计函数用法和示例】考虑以下示例。
例子
import numpy as npa = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])print("Array:\n", a)print("\nMedian of array along axis 0:", np.median(a, 0))
print("Mean of array along axis 0:", np.mean(a, 0))
print("Average of array along axis 1:", np.average(a, 1))
推荐阅读
- numpy tan()方法示例
- NumPy字符串函数使用示例
- NumPy Ndarray用法详细介绍(例子和配图)
- NumPy排序和搜索算法示例
- NumPy rint()方法
- Python中的numpy.reshape()例子
- numpy radians()方法
- Python中的NumPy矩阵乘法实现例子
- Numpy rad2deg()方法示例