#|求解热电联产经济调度问题的改进遗传与粒子群算法

目录
1 概述
2 热电联产经济调度问题的数学模型
2.1 目标函数
?2.2 约束条件
3 Python代码实现

1 概述 热电联产(combined heat and power,CHP)与传统的纯电生产相比,能够同时产生电能和热能网种形式的能量,可显著提高能源利用率,减少温室气体排放量。据相关统计,传统电力系统机组的能效不足60%,而热电联产机组的能效可达到90%。在热电联产经济调度系统中﹐需在满足电力和热力需求及运行约束的前提下,确定出电力和热力资源处理的最优组合,这样才能够充分利用系统能源。
在实际热电联产系统中﹐需考虑传统电力机组的阀点效应,这使得目标花费函数变为非线性﹐从而使热电联产问题的求解变得相当复杂。传统的数学方法如二次规划法、梯度下降法、拉格朗日松弛法[3]己被广泛应用到CHPED问题中,但在面对非线性复杂问题优化时,传统的数学方法在最优解求解方面较为困难。为了克服传统数学方法的不足,众多的群智能优化算法被提出用来解CHPED问题。
2 热电联产经济调度问题的数学模型
2.1 目标函数
CHPED问题的目标函数为:
#|求解热电联产经济调度问题的改进遗传与粒子群算法
文章图片

#|求解热电联产经济调度问题的改进遗传与粒子群算法
文章图片


实际热电联产系统中,机组调门的开放数量随着发电单元的功率增加而增多,当前级调门开启时,蒸汽流通受到阻碍,使得耗能增加﹐产生阀点效应,耗能特性曲线向上凸起,如图1所示。
#|求解热电联产经济调度问题的改进遗传与粒子群算法
文章图片

2.2 约束条件
#|求解热电联产经济调度问题的改进遗传与粒子群算法
文章图片

在热电联产系统中,电力和热刀是个 可分开旦相互关联的,图2为热电朴机组道1运1入以。S2曲线ABCDEF显示了热电机组的道且1一域及范围边界。
#|求解热电联产经济调度问题的改进遗传与粒子群算法
文章图片

3 Python代码实现 #|求解热电联产经济调度问题的改进遗传与粒子群算法
文章图片

【#|求解热电联产经济调度问题的改进遗传与粒子群算法】代码点这里:求解热电联产经济调度问题的改进遗传与粒子群算法???????

    推荐阅读