代码都是学习别人的,但我分享几点我踩过的大坑。
1.蒙特卡洛的V值
【强化学习|强化学习-PPO算法实现pendulum】书上给的例子,是一次取一条轨迹,v=r+gamma*v 依次计算状态价值,这几乎是全部用蒙特卡洛方法的计算状态价值,并且没有对各条轨迹取均值,我想这种方法是极其不好的
2.样本不是独立同分布
由于1.中的原因,取到的样本不是独立同分布,把这种样本放入训练,可能会大幅影响训练效果。
3.代码写的太繁复。
俗话说的好,宁简勿繁,把太多方法封装成函数,在前期是不太好的行为,非常不便于调试,应当全部删去。
4.神经网络极易输出[nan]
可能是因为用了torch.Tensor()来转化向量,double型向量这使得他的内存占用高,改为torch.FloatTensor()有明显改善。这一点极其重要,如果不用这个很可能根本没办法训练
文章图片
训练效果
代码如下
"""
"""
import torch.nn.functional as F
import torchvision.models as models
import retro
import hiddenlayer as hl
import torch
# import retro
import pandas as pd
import numpy as np
import gym
import torch.nn as nn
from torch.distributions import Normal
class DQBReplayer:
def __init__(self,capacity):
self.memory = pd.DataFrame(index=range(capacity),columns=['observation','action','reward','next_observation','done','step'])
self.i=0
self.count=0
self.capacity=capacity
def store(self,*args):self.memory.loc[self.i]=args
self.i=(self.i+1)%self.capacity
self.count=min(self.count+1,self.capacity)
def sample(self,size=32):
indics=np.random.choice(self.count,size=size)return (np.stack(self.memory.loc[indics,field]) for field in self.memory.columns)#为什么#是第indics行和feild列
def clear(self):
self.memory.drop(self.memory.index,inplace=True)
self.count=0
self.i=0
#
class PolicyNetwork(nn.Module):
def __init__(self):
super(PolicyNetwork, self).__init__()
self.relu = nn.ReLU()
self.fc1 = nn.Linear(3, 64)
self.fc2 = nn.Linear(64, 256)
self.fc_mu = nn.Linear(256, 1)
self.fc_std = nn.Linear(256, 1)
self.tanh = nn.Tanh()
self.softplus = nn.Softplus()def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
mu = 2 * self.tanh(self.fc_mu(x))
std = self.softplus(self.fc_std(x)) + 1e-3
return mu, stddef select_action(self, state):with torch.no_grad():
mu, std = self.forward(state)
n = Normal(mu, std)
action = n.sample()
# print(" ac{:.1f},mu{},std{}".format( float(action),mu,std), end=" ")
return np.clip(action.item(), -2., 2.)class ValueNetwork(nn.Module):
def __init__(self):
super(ValueNetwork, self).__init__()
self.relu = nn.ReLU()
self.fc1 = nn.Linear(3, 64)
self.fc2 = nn.Linear(64, 256)
self.fc3 = nn.Linear(256, 1)def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.fc3(x)
return xclass PPO(nn.Module):
def __init__(self):
super(PPO,self).__init__()
self.replayer=DQBReplayer(capacity=1000)
self.gamma=0.99
self.policy = PolicyNetwork().to(device)
self.old_policy = PolicyNetwork().to(device)
self.value = https://www.it610.com/article/ValueNetwork().to(device)
self.learn_step=0
self.canvasl = hl.Canvas()
self.history = hl.History()if __name__ =="__main__":
device=torch.device("cuda" if torch.cuda.is_available() else"cpu")
env=gym.make("Pendulum-v0").unwrappednet=PPO().to(device)
optim = torch.optim.Adam(net.policy.parameters(), lr=0.001)
value_optim= torch.optim.Adam(net.value.parameters(), lr=0.001)for i in range(200000):
state = env.reset()
epoch_reward=0#每局游戏的累计奖励
for step in range(200):
# env.render()
state_tensor = torch.FloatTensor(state).to(device)
action=net.policy.select_action(state_tensor)
next_state,r,done,info=env.step([action])reward = (r + 8.1) / 8.1
epoch_reward+=reward
net.replayer.store(state, action, reward, next_state, done,step)
net.learn_step += 1
state = next_statenet.old_policy.load_state_dict(net.policy.state_dict())
for K in range(10):
sample_n = net.replayer.count
states, actions, rewards, next_states, dones, steps = net.replayer.sample(32)
states = torch.FloatTensor(states).to(device)
next_states = torch.FloatTensor(next_states).to(device)
actions = torch.FloatTensor(actions).unsqueeze(1).to(device)
rewards = torch.FloatTensor(rewards).unsqueeze(1).to(device)
with torch.no_grad():# 为什么
old_mu, old_std = net.old_policy(states)
old_n = Normal(old_mu, old_std)value_target = rewards + net.gamma * net.value(next_states)
advantage = value_target - net.value(states)mu, std = net.policy(states)
n = Normal(mu, std)
log_prob = n.log_prob(actions)
old_log_prob = old_n.log_prob(actions)
ratio = torch.exp(log_prob - old_log_prob)
L1 = ratio * advantage
L2 = torch.clamp(ratio, 0.8, 1.2) * advantage
loss = torch.min(L1, L2)
loss = - loss.mean()
# writer.add_scalar('action loss', loss.item(), steps)optim.zero_grad()
loss.backward()
optim.step()
#clear
value_loss = F.mse_loss(value_target, net.value(states))
value_optim.zero_grad()
value_loss.backward()
value_optim.step()
net.replayer.clear()
# writer.add_scalar('value loss', value_loss.item(), steps)if i % 10 == 0 and i!=0:
print('Epoch:{}, episode reward is {}'.format(i, epoch_reward))
torch.save(net.policy.state_dict(), "pendulun_para\\reward"+str(epoch_reward//10)+'ppo-policy.para')
# net.history.log((i * 200), avg_reward=epoch_reward/10)
# with net.canvasl:
#net.canvasl.draw_plot(net.history["avg_reward"])
epoch_reward = 0
推荐阅读
- 强化学习|强化学习基础记录
- python项目|全卷积神经网络(FCN)和卷积神经网络(CNN)的主要区别
- python项目|深入理解网络结构设计中的add操作和concatenate操作
- pytorch|对于torch.nn.AdaptiveAvgPool2d()自适应平均池化函数的一些理解
- 机器学习|“机器学习与深度学习”简要介绍与深度学习Hello World
- Python字典深入理解教程
- 迁移学习(利用大数据的洞察力)
- Python中的Web爬虫和NLP
- R Graph Gallery的访问量最大的5个图主题