五陵年少金市东,银鞍白马渡春风。这篇文章主要讲述Redis网红高频面试题三连:缓存穿透?缓存击穿?缓存雪崩?相关的知识,希望能为你提供帮助。
Redis网红面试题三连
- 面试题1:怎么解决缓存穿透问题的?
- 面试题2:说一下缓存击穿吧,你们是怎么解决的?
- 面试题3:那缓存雪崩说说你们是怎么解决的?
文章图片
面试题1:怎么解决缓存穿透问题的?缓存穿透:指缓存和数据库中都没有的数据,导致所有的请求都打到数据库上,然后数据库还查不到(如null),没法写缓存,造成数据库短时间线程数被打满而导致其他服务阻塞,最终导致线上服务不可用。此时缓存就好像被穿透了一样,起不到任何作用。
当然,使用缓存难免会有穿透的发生。
- 缓存容量有限,不可能去缓存所有数据,查询到未被缓存的数据就会发生穿透是正常情况。
- 互联网业务的数据访问模型一般是遵循二八原则的,即 20% 的数据为热点数据,80% 的数据是非热点不被常访问的数据。既然缓存容量有限,且20%的数据为热点数据,那我们可以利用有限的容量去缓存那 20% 的数据来保护我们的系统,至于80%非热点不常用的数据发生穿透就穿透了,数据库吃得住。
- 接口参数校验:
- 设置空值:
但是如果有大量的获取并不存在数据的穿透请求的话如恶意攻击,则会浪费缓存空间,如果这种null值过量的话,还会淘汰掉本身缓存存在的数据,这就会使我们的缓存命中率下降。
因此在使用设置空值方案时,我们要做好监控,预防缓存空间被过多null值占领造成的缓存空间浪费,如果这种数据量太大,就不再建议使用,那就使用另一种方案,即布隆过滤器。
- 布隆过滤器:
布隆过滤器的特点是判断不存在的,则一定不存在;判断存在的,大概率存在,但也有小概率不存在。并且这个概率是可控的,根据具体需求,我们可以让这个概率小幅降低或变高。
文章图片
布隆过滤器由一个 bitSet 和 一组 Hash 函数(算法)组成,是一种空间效率极高的概率型算法和数据结构,通过二进制来进行数据存储。在初始化时,bitSet 的每一位被初始化为0。
当数据加入布隆过滤器集合时,流程如下:
文章图片
- 经过K个哈希函数计算该数据,返回K个计算出的hash值
- 这些K个hash值映射到对应的K个二进制的数组下标
- 将K个下标对应的二进制数据改为1。
- 经过K个哈希函数计算该数据,对应计算出的K个hash值
- 经过hash值找到对应的二进制的数组下标
- 如果存在其中一处位置的二进制数据是0,那么该数据不存在。若是都是1,该数据存在集合中(但由于存在Hash碰撞,判断数据存在时可能存在误判)。
优势
- 因为存储的是二进制数据,因此占用的空间很小;
- 它的插入和查询速度是很是快的,时间复杂度是O(K),能够联想一下HashMap的过程;
- 保密性很好,由于自己不存储任何原始数据,只有二进制数据
- 存在误判
文章图片
例如图中的你好和hello,假如最终算出hash值相同,那么他们会将同一个下标的二进制数据改成1。因此也无法确定key为你好和hello是否存在。
- 删除困难
面试题2:说一下缓存击穿吧,你们是怎么解决的?解决方案:
1、加互斥锁(mutex key)。 在并发的多个请求中,只有第一个请求线程能拿到锁并执行数据库查询操作,其他的线程拿不到锁就阻塞等着,等到第一个线程将数据写入缓存后,直接走缓存。
static Lock reenLock = new ReentrantLock();
public List<
String>
getData04() throws InterruptedException {
List<
String>
result = new ArrayList<
String>
();
// 从缓存读取数据
result = getDataFromCache();
if (result.isEmpty()) {
if (reenLock.tryLock()) {
try {
System.out.println("拿到锁了,从DB获取数据库后写入缓存");
// 从数据库查询数据
result = getDataFromDB();
// 将查询到的数据写入缓存
setDataToCache(result);
} finally {
reenLock.unlock();
// 释放锁
}} else {
result = getDataFromCache();
// 先查一下缓存
if (result.isEmpty()) {
System.out.println("我没拿到锁,缓存也没数据,先小憩一下");
Thread.sleep(100);
// 小憩一会儿
return getData04();
// 重试
}
}
}
return result;
}
2、热点数据不过期。 根据实际业务情况,在Redis中维护一个热点数据表,批量设为永不过期(如top1000),并定时更新top1000数据。
这种方式适用于比较极端的场景,例如流量特别特别大的场景,使用时需要考虑业务能接受数据不一致的时间,还有就是异常情况的处理,不要到时候缓存刷新不上,一直是脏数据,那就凉了。
面试题3:那缓存雪崩说说你们是怎么解决的?缓存雪崩:大量的热点 key 设置了相同的过期时间,导致缓存在同一时刻全部失效,造成瞬时数据库请求量大、压力骤增,引起雪崩,甚至导致数据库被打挂。缓存雪崩其实有点像升级版的缓存击穿,缓存击穿是一个热点 key,缓存雪崩是一组热点 key。
解决方案:
1、过期时间打散: 既然是大量缓存集中失效,那最容易想到就是让他们不集中生效。可以给缓存的过期时间加上一个随机值时间,使得每个 key 的过期时间分布开来,不会集中在同一时刻失效。
2、热点数据不过期: 缓存永不过期,异步更新缓存数据。虽然不会出现雪崩效应,却无法保证数据的一致性。
【Redis网红高频面试题三连(缓存穿透(缓存击穿?缓存雪崩?))】3、加互斥锁: jvm锁机制、分布式锁机制都可以。该方式和缓存击穿一样,按 key 维度加锁,对于同一个 key,只允许一个线程去计算,其他线程原地阻塞等待第一个线程的计算结果,然后直接走缓存即可。
推荐阅读
- Android性能优化之Android 10+ dex2oat实践
- mysql使用
- 学习Python的 14 张思维导图
- WP使Avatar成为超链接
- 隐藏在页面内容后面的主导航子菜单-无法弄清原因
- wp-bakery的位置和文件夹名称
- 使用WordPress Avada子主题将主logo链接到自定义URL而不是首页()
- wordpress帖子类型的限制摘要
- WordPress标签文字为空