业无高卑志当坚,男儿有求安得闲?这篇文章主要讲述阿里云 EventBridge 事件驱动架构实践相关的知识,希望能为你提供帮助。
作者:周新宇
审核&
校对:白玙、佳佳
编辑&
排版:雯燕
本文内容整理自 中国开源年会 演讲
首先做一个自我介绍,我是 RocketMQ 的 PMC member 周新宇,目前负责阿里云 RocketMQ 以及 EventBridge 的产品研发。今天我的分享主要包括以下几部分:
- 消息与事件、微服务与事件驱动架构
- 阿里云 EventBridge:事件驱动架构实践
- 基于 RocketMQ 内核构建阿里云统一的事件枢纽
-
云原生时代的新趋势:Serverless+ 事件驱动
- 事件驱动架构的未来展望
首先,我们先讲一下消息跟事件的区别:大家都知道 RocketMQ 里面的消息,它是非常泛化的概念,是一个比事件更加抽象的概念。因为消息的内容体就是 Byte 数组,没有任何一个定义,是个弱 Data,所以它是非常通用的抽象。
与之相反的,事件可能是更加具象化的。一般情况下,它有一个 Schema 来精准描述事件有哪些字段,比如 CloudEvents 就对事件有一个明确的 Schema 定义。事件也往往代表了某个事情的发生、某个状态的变化,所以非常具象化。
从用途来讲,消息往往用于微服务的异步解耦的架构。但这一块的话,事件驱动跟消息是稍微类似的。消息的应用场景往往发生在一个组织内部,消息的生产方知道这个消息要将被如何处理。比如说在一个团队里,消息的生产者跟发送者可能是同一个团队同一块业务,对这个消息内容有一个非常强的约定。相比之下,事件更加松耦合,比如说事件发送方也不知道这个事件将被投递到什么地方,将被谁消费,谁对他感兴趣,对事件被如何处理是没有任何预期的。所以说,基于事件的架构是更加解耦的。消息的应用往往还是脱离不了同一个业务部门,即使一些大公司里最多涉及到跨部门合作。消息的使用通过文档进行约束,事件通过 Schema 进行约束,所以我们认为事件是比消息更加彻底解耦的方式。
文章图片
接下来,微服务架构跟 EDA 架构有什么区别?
首先是微服务架构,微服务作为从单体应用演进而来的架构,比如说把一个单体应用拆成了很多微服务,微服务之间通过 RPC 进行组织和串联。过去一个业务可能是在本地编排了一堆 function,现在通过一堆 RPC 将之串起来。比如说用户去做一个前端的下单操作,可能后台就是好几个微服务进行订单操作,一个微服务去新建订单,一个微服务去对订单进行处理,处理完再调另一个微服务去把订单已完成的消息通知出去,这是一个典型的 RPC 架构。
文章图片
但纯粹的 RPC 架构有很多问题,比如所有业务逻辑是耦合在一起的,只是把本地方法调用换成了远程调用。当业务增速达到一定阶段,会发现各个微服务之间的容量可能是不对等的,比如说短信通知可以通过异步化完成,却同步完成。这就导致前端有多大流量,短信通知也需要准备同样规模的流量。当准备资源不充足,上下游流量不对等时,就有可能导致某个微服被打挂,从而影响到上游,进而产生雪崩效应。
在这种情况下,大家一般就会引入消息队列进行异步解耦。这个架构已非常接近于事件驱动架构了,还是以用户前端创建一个订单举例,订单创建的事件就会就发到事件总线、event broker、 event bus 上,下游各个不同订阅方去对这个事件做监听处理。
不同之处在于消息订阅者基于消息中间件厂商提供 SDK 的去做消息处理,业务往往需要进行改造,也会被厂商提供的技术栈绑定;事件驱动架构中订阅者属于泛化订阅,即不要求订阅方基于什么样的技术栈去开发,可以是一个 HTTP 网关,也可以是一个function,甚至可以是历史遗留的存量系统。只要 event broker 兼容业务的协议,就可以把事件推送到不同订阅方。可以看到,泛化订阅的用途更加广泛,更加解耦,改造成本也最低。
阿里云 EventBridge:事件驱动架构实践
Gartner 曾预测, EDA 架构将来会成为微服务主流。在 2022 年它将会成为 60% 的新型数字化商业解决方案,也会有 50% 的商业组织参与其中。
同时, CNCF 基金会也提出了 CloudEvents 规范,旨在利用统一的规范格式来声明事件通信。EventBridge也是遵循这一标准。CloudEvents作为社区标准,解除了大家对于厂商锁定的担忧,提高了各个系统之间的互操作性,相当于说对各个系统约定了统一的语言,这个是非常关键的一步。
事件在开源社区有了统一的规范,但在云上,很多用户购买了云厂商很多云产品,这些云产品每天可能有数以亿计的事件在不停产生,这些事件躺在不同云服务的日志、内部实现里。用户也看不着,也不知道云产品实例在云上发生什么事情。各个厂商对事件的定义也不一样,整体是没有同一类标准。各个云服务之间的事件是孤立的,就是说没有打通,这不利于挖掘事件的价值。在使用开源产品时也有类似问题,用户往往也没有统一标准进行数据互通,想去把这些生态打通时需要付出二次开发成本。
最后,事件驱动在很多场景应用的现状是偏离线的,现在比较少的人把 EDA 架构用于在线场景。一方面是因为没有事件型中间件基础设施,很难做到一个事件被实时获取,被实时推送的同时,能被业务方把整个链路给追踪起来。所以,以上也是阿里云为什么要做这款产品的背景。
因此,我们对 EventBridge 做了定义,它有几个核心价值:
一、统一事件枢纽:统一事件界面,定义事件标准,打破云产品事件孤岛。
二、事件驱动引擎:海量事件源,毫秒级触发能力,加速 EDA/Serverless 架构升级。
三、开放与集成:提供丰富的跨产品、跨平台连接能力,促进云产品、应用程序、SaaS服务相互集成。
文章图片
首先讲一下,EventBridge 基本模型,EventBridge 有四大部分。第一部分是事件源,这其中包括云服务的事件、自定义应用、SaaS应用、自建数据平台。
第二个部分就是事件总线,这是存储实体,事件过来,它要存在某个地方进行异步解耦。类似于说 RocketMQ 里面 topic 的概念,具备一定存储的同时,提供了异步能力。事件总线涵盖两种,一种默认事件总线,用于收集所有云产品的事件,另一种自定义事件总线就是用户自己去管理、去定义、去收发事件,用来实践 EDA 架构概念。第三部分就是规则,规则与 RocketMQ 的消费者、订阅比较类似,但我们赋予规则包括过滤跟转换在内的更多计算能力。第四部分就是事件目标即订阅方,对某事件感兴趣就创建规则关联这个事件,这其中包括函数计算、消息服务、HTTP 网关等等。
文章图片
这里具体讲一下这个事件规则,虽然类似于订阅,但事件规则拥有事件轻量级处理能力。比如在使用消息时可能需要把这个消息拿到本地,再决定是否消费掉。但基于规则,可以在服务端就把这个消息处理掉。
事件规则支持非常复杂的事件模式过滤,包括对指定值的匹配,比如前缀匹配、后缀匹配、数值匹配、数组匹配,甚至把这些规则组合起来形成复杂的逻辑匹配能力。
文章图片
另一个,就是转换器能力,事件目标泛化定义,其接受的事件格式可能有很多种,但下游服务不一定。比如说你要把事件推到钉钉,钉钉 API 已经写好了并只接受固定格式。那么,把事件推过去,就需要对事件进行转换。我们提供了包括:
- 完整事件:不做转换,直接投递原生 CloudEvents。
- 部分事件:通过 JsonPath 语法从 CloudEvents 中提取部分内容投递至事件目标。
- 常量:事件只起到触发器的作用,投递内容为常量。
- 模板转换器:通过定义模板,灵活地渲染自定义的内容投递至事件模板。
- 函数:通过指定处理函数,对事件进行自定义函数处理,将返回值投递至事件目标。
文章图片
事件因相对消息更加解耦、离散,所以事件治理也更加困难。所以,我们制作了事件中心并提供三块能力:
- 事件追踪:对每一个事件能有完整的追踪,它从在哪里产生,什么时候被投递,什么时候被过滤掉了,什么时候被投递到某个目标,什么时候被处理成功了。使整个生命周期完全追踪起来。
- 事件洞察&
分析:让用户从 EDA 编程视角变成用户视角,让用户更加迅速的了解 EventBridge 里面到底有哪些事件,并进行可视化分析。通过 EB 做到就近计算分析,直接把业务消息导入到事件总线中,对消息进行及时分析。
- 事件大盘:针对云产品,引导云产品对业务事件进行定义,让云产品更加开放,从而提供大盘能力。
EventBridge 一开始就构建在云原生的容器服务之上。在这之上首先是 RocketMQ 内核,内核在这个产品里扮演的角色有两种,一种就是事件存储,当成存储来用;另一方面是利用订阅能力,把订阅转化成泛化订阅。在 RocketMQ 内核之上就是 connect 集群。EventBridge 比较重要的能力是连接,所以 EventBridge 首先要具备 Source 的能力,把事件 Source 过来,然后再存下来;其核心是 Connect 集群,每个 Connect 集群有很多 Worker。每个 Worker 要负责很多事情,包括事件的摄入,事件过滤,事件转换,事件回放,事件追踪等,同时在 Connect 集群之上有 Connect 控制面,来完成集群的治理,Worker 的调度等。
在更上面一层是 API Server,一个事件的入口网关,EventBridge 的世界里,摄入事件有两种方式,一种是通过 Connect 的 Source Connector,把事件主动的 Source 过来,另一种用户或者云产品可以通过 API server,通过我们的 SDK 把事件给投递过来。投递的方式有很多种,包括有 OpenAPI,有多语言的官方 SDK,同时考虑 CloudEvents 有社区的标准,EventBridge 也完全兼容社区开源的 SDK,用户也可以通过 Webhook 将事件投递过来。
这个架构优点非常明显:
(1)减少用户开发成本
- 用户无需额外开发进行事件处理
- 编写规则对事件过滤、转换
- 拥抱 CNCF 社区,无缝对接社区 SDK
- 标准协议统一阿里云事件规范
- 支持事件 Schema 自动探测和校验
- Source 和 Target 的 Schema 绑定
- 组建了跨地域、跨账户的事件网络
- 支持跨云、跨数据中心事件路由
文章图片
云原生时代的新趋势:Serverless+ 事件驱动
我们认为 Serverless 加事件驱动是新的研发方式,各个厂商对 Serverless 理解各有侧重,但是落地方式大道趋同。
首先,Serverless 基础设施把底层 IaaS 屏蔽掉,上层 Serverless 运行时即计算托管,托管的不仅仅是微服务应用、K8s 容器,不仅仅是函数。
EventBridge 首先把这种驱动的事件源连接起来,能够触发这些运行时。因为 Serverless 最需要的就是驱动方,事件驱动带给他这样的能力,即计算入口。EventBridge 驱动 Serverless 运行时,再去连接与后端服务。目前,EventBridge 与 Serverless 结合的场景主要是松耦合场景,比如前端应用、SaaS 服务商小程序,以及音视频编解码等落地场景。
那么,Serverless 的 EDA 架构开发模式到底是怎样的呢?以函数计算为例,首先开发者从应用视角需要转换为函数视角,将各个业务逻辑在一个个函数中进行实现;一个函数代表了一个代码片段,代表了一个具体的业务,当这段代码上传后就变成了一个函数资源,然后 EventBridge 可以通过事件来驱动函数,将函数通过事件编排起来组成一个具体的应用。
这里面 function 还需要做很多事情,大家也知道 function 有很多弊端,它最受诟病的就是冷启动。因为 Serverless 需要 scale to zero 按量付费,在没有请求没有事件去触发时,应该是直接收到 0 的,从 0~1 就是一个冷启动。这个冷启动有些时候可能要秒级等待,因为它可能涉及到下载代码、下载镜像,涉及到 namespace 的构建,存储挂载,root 挂载,这里面很多事情,各个云厂商投入很大精力优化这一块。Serverless 价格优势很明显,它资源利用率特别高,因按量付费的,所以能做到接近百分百的资源利用率,也不需要去做容量规划。
文章图片
举一个简单的例子,就是基于 Serverless 加 EDA 的极简编程范式,再举一个具体的例子,新零售场景下 EDA 架构对这个业务进行改造。首先来讲,业务中有几个关键资源,可能有 API 网关、函数计算,首先可以去打通一些数据,打通 rds 并把 rds 数据同步过来,兼容一些历史架构,同时去触发计算资源、function、网关。整个架构优势非常明显,所以具备极致弹性能力,不需要去预留资源。
文章图片
事件驱动的未来展望
我们认为事件驱动的未来有两部分,一是要做好连接,做好云内、跨云的集成,让用户的多元架构更加高效。二是开源生态的集成,我们可以看到开源生态愈发蓬勃,所以也需要把这些开源生态中的数据集成好。此外,还有传统 IDC 计算能力、边缘计算能力这些生态都需要有连接性软件把它连接起来。
文章图片
EventBridge 是云原生时代新的计算驱动力,这些数据可以去驱动云的计算能力,创造更多业务价值。
了解更多相关信息,请扫描下方二维码或搜索微信号(AlibabaCloud888)添加云原生小助手!获取更多相关资讯!
文章图片
推荐阅读
- 入门C++基础知识
- Flutter 专题12 图解圆形与权重/比例小尝试 #yyds干货盘点#
- spdk vhost常见问题速查
- 中介模式C++实现
- Java项目:校园超市管理系统(java+SSM+Mysql+Maven+Bootstrap)
- linux总结10大危险命令
- #yyds干货盘点# C#List常用排序方法
- #yyds干货盘点# Electron常见问题 48 - Electron 获取本机 MAC 地址
- #yyds干货盘点# .NET Core 中对象池(Object Pool)的使用