厌伴老儒烹瓠叶,强随举子踏槐花。这篇文章主要讲述#yyds干货盘点# MySQL性能优化:常见优化SQL的技巧相关的知识,希望能为你提供帮助。
文章图片
作者:xcbeyond
博客:https://xcbeyond.cn/ 公众号:程序猿技术大咖
在面对不够优化、或者性能极差的SQL语句时,我们通常的想法是将重构这个SQL语句,让其查询的结果集和原来保持一样,并且希望SQL性能得以提升。而在重构SQL时,一般都有一定方法技巧可供参考,本文将介绍如何通过这些技巧方法来重构SQL。
一、分解SQL有时候对于一个复杂SQL,我们首先想到的是是否需要将一个复杂SQL分解成多个简单SQL,来完成相同业务处理结果。
在以前,大家总是强调需要数据库层来完成尽可能的工作,这也就不难理解在一些老的产品、项目中时常会看见很多超级复杂、超级长的SQL语句,这样做的逻辑在以前认为多次交互,在网络带宽、程序与数据库间网络通信等方面是一件代价很高的事情。然后在现在,无论是带宽还是延迟,网络速度比以前要快的很多,多次交互也没有太大的问题。即使在一个通用服务器上,也能够运行每秒超过10万的查询,所以运行多个小查询现在已经不是大问题了。
复杂SQL的分解,在面对超级复杂SQL语句时,性能提升尤为明显。所以,在面对超级复杂SQL语句,并且存在性能问题时,推荐分解为小查询来进行优化。
不过,在应用设计的时候,如果一个查询能够胜任并且不会产生性能问题,这时完全可以用一个稍微复杂的SQL来完成的,倘若再死板的强制拆分成多个小查询是不明智的。
< u> 在当今很多高性能的应用系统中,都是极力推荐使用单表操作,然后将单表查询结果在应用程序中进行关联,以满足复杂业务的查询需求。< /u> 一个SQL可以搞定事情,为何要分开来写,而且还得在应用程序中多次执行SQL查询,再进行结果集的关联,这到底为什么要这么做呢?
乍一看,这样做复杂不说而且没有什么好处,原本一条查询,这样却变成了多条查询。事实上,这样分解有如下的优势:
- 让缓存更高效。在应用程序中,可以很方便地缓存单表查询结果对应的结果对象,便于后续任何时候可以直接从结果对象中获取数据。
- 分解查询后,执行单个查询可以减少表锁的竞争。
- 在程序应用层做关联,可以更容易对数据库进行拆分,更容易做到高性能和可扩展。
- 单表查询效率高于多表复杂查询。
- 减少冗余记录的查询。在程序应用层关联,意味着对于某条记录应用只需要查询一次,而在数据库中做关联查询,则可能需要重复地访问一部分数据记录。从这点来看,这样的重构还可能减少网络和内存的消耗。
这样做,不管对于SQL查询本身,还是对于上层业务来说,都是很小的开销。最典型的的案例就是分页查询,目前各类框架都有了很好的支持,如:
MyBatis
等,只需在实际使用时稍加留意就可避免。三、执行计划使用执行计划
EXPLAIN
关键字,可以使我们知道mysql是如何执行SQL语句的,这样可以帮助我们分析我们的查询语句或是表结构的性能瓶颈。EXPLAIN的查询结果还会告诉我们索引主键是如何被利用的,数据表是如何被搜索或排序的....等等。语法格式是:
EXPLAIN SELECT语句;
通过执行计划结果,将会指导我们进一步来重构SQL语句,如:增加索引、调整索引顺序、避免使用某些函数等等。
关于执行计划,后续章节将会单独详细讲解。
四、遵守原则在平时写SQL时,养成好的习惯,多加留意,很大程度上就会避免一些SQL性能问题。汇总如下:
- 永远为每张表设置一个ID主键。
- 避免使用
SELECT *
。
- 为搜索字段建立索引。
- 在Join表的时候使用对应类型的列,并将其索引。
- 尽可能的使用NOT NULL。
- 【#yyds干货盘点# MySQL性能优化(常见优化SQL的技巧)】越小的列会越快。
- 当只要一行数据时使用
LIMIT 1。
- 操作符的优化,尽量不采用不利于索引的操作符,目的就是为了避免全表扫描。
1)in
和not in
慎用,尽量用between
代替in
,用not exists
代替not in
2)is null
和is not null
慎用
3)!=
或& lt; & gt;
操作符能不用就不用,否则将使引擎放弃使用索引而进行全表扫描。
- ……
MySQL查询缓存保存查询返回的完整结果。当查询命中该缓存,MySQL会like返回结果,跳过了解析、优化和执行截断。
这是提高查询性能最有效的方法之一,而且这是被MySQL引擎处理的,通常MySQL默认是不开启查询缓存的,需要手动开启。
查询缓存对应用程序是完全透明的。应用程序无需关心MySQL是通过查询返回的还是实际执行返回的结果。事实上,这两种方式执行的结果是完全相同的。换句话说,查询缓存无需使用任何语法。
随着现在的通用服务器越来越强大,查询缓存被发现是一个影响服务器扩展性的因素。它可能成为整个服务器的资源竞争单点,在多核服务器上还可能导致服务器僵死。所以大部分时候应该默认关闭查询缓存,如果查询缓存作用很大的话,可以配置个几十兆的小缓存空间。(在选择时,需要进行权衡)
关于查询缓存有如下参数可供配置:
query_cache_type
是否打开查询缓存。可以设置OFF
、ON
、DEMAND
,DEMAND
表示只有在查询语句中明确写入sql_cache
的语句才放入查询缓存。
query_cache_size
查询缓存使用的总内存空间,单位是字节。这个值必须是1024的整倍数,否则实际分配的数据会和指定的大小有区别。
query_cache_min_res_unit
在查询缓存中分配内存块时的最小单位。
query_cache_limit
缓存的最大查询结果。如果查询结果大于这个值,则不会被缓存。因为查询缓存在数据生成的时候就开始尝试缓存数据,所以只有当结果全部返回后,MySQL才知道查询结果是否超出限制。
推荐阅读
- 了解DNS的作用,实际中给客户分配什么DNS地址好呢()
- #yyds干货盘点#一次性解决text-justify,text-orientation等冷门属性文本属性
- #yyds干货盘点#一个方便的小系统,用于 CSS 中的动画入口
- #yyds干货盘点#最全深入浅出聊聊IO
- 如何基于 Docker 快速搭建 Springboot + Mysql + Redis 项目
- WordPress(按自定义日期字段排序WP_Query并在每个月后拆分循环)
- WordPress关于Docker swarm插件的问题吗()
- WordPress新手,在安装主题和插件时保持以下错误
- WordPress导航菜单