采得百花成蜜后,为谁辛苦为谁甜。这篇文章主要讲述#yyds干货盘点# 如何设计秒杀系统相关的知识,希望能为你提供帮助。
1 秒杀的问题服务单一、独立部署
秒杀服务即使自己扛不住高并发而宕机,也不要造成服务雪崩。
秒杀链接加密
- 避免恶意攻击,机器人模拟秒杀请求
- 避免链接暴露,自己工作人员,提前秒杀商品
秒杀读多写少。无需每次实时校验库存。库存预热,放到Redis,信号量控制进来秒杀的请求。
动静分离
nginx做好动静分离。静态资源 Nginx 直接返回,保证秒杀和商品详情页的动态请求才打到后端服务集群。
使用CDN网络,分担本集群压力。
恶意请求拦截
服务网关识别非法攻击请求并进行拦截。
流量削峰
使用各种手段,将流量分担到更大宽度的时间点。比如验证码,加入购物车。
限流、熔断、降级
前端限流+后端限流 限制次数,限制总量,快速失败降级运行, 熔断隔离防止雪崩。
队列削峰
1万个商品,每个1000件秒杀。双11 所有秒杀成功的请求,进入队列,慢慢创建 订单,扣减库存即可。
高并发系统设计的三个目标:性能、可用性和可扩展性。
在提升系统性能方面我们一直关注的是系统的查询性能,比如数据库的分布式改造,各类缓存。因为大部分场景都是读多写少。
比如一个社区系统初期一定是只有少量的种子用户在生产内容,而大部分的用户都在“围观”别人在说什么。此时,整体流量较小,而写流量可能只占整体流量的百分之一,那么即使整体的QPS到了1w,写请求QPS也只是到了100,如果要对写请求做性能优化,性价比不高。
但随着业务发展,可能遇到一些存在高并发写请求场景,比如秒杀。假设你的商城策划了一期秒杀活动,活动在第五天的00:00开始,仅限前200名,那么秒杀即将开始时,后台会显示用户正在疯狂地刷新APP或者浏览器来保证自己能够尽量早的看到商品。
但读请求依旧过高,如何应对?
2 优化方案丢弃订单
最早期,量太大扛不住,直接前端随机reject一些,返回抢单失败,简单粗暴,但有效,比如10万人抢100个iPhone,只要能提前预测有大概1万以上的人参与(通过资格确认、报名等方式收集信息),那么直接请求进来以后随机挡回去99%的流量都没有啥问题。
优化吞吐
【#yyds干货盘点# 如何设计秒杀系统】中间有段时间,提前准备一大批机器,服务化、分库分表搞定后端性能,让前端业务可以加一定量的机器,然后搞稳定性,依赖关系,容量规划,做弹性,提升吞吐量。
异步队列
使用可堆积的消息队列或内存消息队列。若抢单具有强顺序,则先都进队列,然后拿前N (就是库存数)个出来平滑处理,剩下都可作为失败进行批处理。
甚至还可做一个定长队列,再往里写直接提示失败。队列把并发变成串行,从而去掉了分布式锁。
内存分配
某些业务可以考虑预热,提前在每个机器节点内存分配好库存数,然后直接在内存处理库存数。
拆分扩展
对于不同类型、不同商家、不同来源的商品,部署不同的前端促销集群,
分散压力。比如,按每个整点发起秒杀,具体到每个商家,其实量就不大了。
服务降级
越重要的抢单,大家越关心自己有没有抢到,而不是特别在意订单立即处
理完,也就是说,下单占到位置比处理完成订单要更有价值。比如12306春运抢票,只要告诉用户你抢到了票,但预计1个小时后订单才会处理完,用户有这个明确预期即可。用户不会立马使用这张票,也不会在意1min还是1h内处理完。
部分方案会导致销售不足或超卖:
- 销售不足可以从抢购里加一些名单补发,也可以加一轮秒杀
- 超卖比较麻烦,所以一般会多备一点货,比如抢100个iPhone,提前准备110 个
当然,你可以加上一些限流的策略,比如对短时间之内来自某一个用户、某一个IP或者某一台设备的重复请求做丢弃处理。
通过这几种方式,请求就可以尽量挡在数据库之外了。
稍微缓解了读请求之后,00:00分秒杀活动准时开始,用户瞬间向电商系统请求生成订单,扣减库存,用户的这些写操作都是不经过缓存直达数据库的。1秒钟之内,有1万个数据库连接同时达到,系统的数据库濒临崩溃,寻找能够应对如此高并发的写请求方案迫在眉睫。这时你想到了消息队列。
理解消息队列
把消息队列看作暂时存储数据的一个容器,它是一个平衡低速系统和高速系统处理任务时间差的工具。
比如古代臣子朝见皇上陈述国家大事,等皇上决策。但大臣很多,如果同时去找皇上,皇上肯定会崩溃。后来变成臣子到午门后要原地等皇上将他们一个一个地召见进大殿商议,这就缓解皇上处理事情的压力。
可以把午门看作一个暂时容纳臣子的容器,即消息队列:
- 在java线程池中我们就会使用一个队列来暂时存储提交的任务,等待有空闲的线程处理这些任务
- os中断的下半部分也会使用工作队列来实现延后执行
- 实现一个RPC框架时,也会将从网络上接收到的请求写到队列里,再启动若干个工作线程来处理
削去秒杀场景下的峰值写流量
在秒杀场景下短时间之内数据库的写流量很高,按以前思路,应该分库分表。若已做了分库分表,则需要扩展更多数据库应对更高写流量。
但无论是分库分表还是扩充更多数据库都会很复杂,因为你需要迁移数据库中的数据,这个时间就要按天甚至周计算。
而在秒杀场景下高并发的写请求并不是持续的,也不是经常发生,而只有在秒杀活动开始后的几s或十几s时间内才存在。
为了应对这十几s瞬间写高峰,而去花费几天甚至几周扩容DB,再在秒杀之后花费几天做缩容,得不偿失!
所以思路是:将秒杀请求暂存在MQ,然后业务服务器会响应用户“秒杀结果正在计算”,释放了系统资源之后再处理其它用户请求。
在后台启动若干个队列处理程序消费MQ中的消息,再执行校验库存、下单等逻辑。因为只有有限个队列处理线程在执行,所以落入后端DB上的并发请求有限。而请求是可以在MQ被短暂堆积,当库存被消耗完后,消息队列中堆积的请求就可以被丢弃了。
这就是MQ在秒杀系统中主要作用:削峰填谷,可以削平短暂流量高峰,虽说堆积会造成请求被短暂延迟处理,但只要我们时刻监控MQ中的堆积长度,在堆积量超过一定量时,增加队列处理机数量来提升消息处理能力即可,而且秒杀用户对于短暂延迟知晓秒杀的结果也有一定容忍度。
注意是“短暂”延迟,若长时间没有给用户公示秒杀结果,则用户会怀疑秒杀活动有黑幕。所以在使用MQ应对流量峰值时,需要对队列处理的时间、前端写入流量的大小、数据库处理能力做好评估,然后根据不同的量级来决定部署多少台队列处理程序。
比如你的秒杀商品有1000件,处理一次购买请求的时间是500ms,那么总共就需要500s的时间。这时你部署10个队列处理程序,那么秒杀请求的处理时间就是50s,也就是说用户需要等待50s才可以看到秒杀的结果,这是可以接受的。这时会并发10个请求到达数据库,并不会对数据库造成很大的压力。
通过异步处理简化秒杀请求中的业务流程
其实在大量的写请求“攻击”你的电商系统的时候,消息队列除了发挥主要的削峰填谷的作用之外,还可以实现异步处理来简化秒杀请求中的业务流程,提升系统的性能。
你想,在刚才提到的秒杀场景下,我们在处理购买请求时需要500ms。这时你分析了一下整个的购买流程,发现这里面会有主要的业务逻辑,也会有次要的业务逻辑:比如说,主要的流程是生成订单、扣减库存;次要的流程可能是我们在下单购买成功之后会给用户发放优惠券,会增加用户的积分。
假如发放优惠券的耗时是50ms,增加用户积分的耗时也是50ms,那么如果我们将发放优惠券、增加积分的操作放在另外一个队列处理机中执行,那么整个流程就缩短到了400ms,性能提升了20%,处理这1000件商品的时间就变成了400s。如果我们还是希望能在50s之内看到秒杀结果的话,只需要部署8个队列程序就好了。
经过将一些业务流程异步处理之后,我们的秒杀系统部署结构也会有所改变:
解耦实现秒杀系统模块之间松耦合
除了异步处理和削峰填谷以外,消息队列在秒杀系统中起到的另一个作用是解耦合。
比如数据团队对你说,在秒杀活动之后想要统计活动的数据,借此来分析活动商品的受欢迎程度、购买者人群的特点以及用户对于秒杀互动的满意程度等等指标。而我们需要将大量的数据发送给数据团队,那么要怎么做呢?
一个思路是:使用HTTP或者RPC的方式来同步地调用,也就是数据团队这边提供一个接口,我们实时将秒杀的数据推送给它,但是这样调用会有两个问题:
整体系统的耦合性比较强,当数据团队的接口发生故障时,会影响到秒杀系统的可用性。
当数据系统需要新的字段,就要变更接口的参数,那么秒杀系统也要随着一起变更。
这时,我们可以考虑使用消息队列降低业务系统和数据系统的直接耦合度。
秒杀系统产生一条购买数据后,我们可以先把全部数据发送给消息队列,然后数据团队再订阅这个消息队列的话题,这样它们就可以接收到数据,然后再做过滤和处理了。
秒杀系统在这样解耦合之后,数据系统的故障就不会影响到秒杀系统了,同时当数据系统需要新的字段时,只需要解析消息队列中的消息,拿到需要的数据就好了。
异步处理、解耦合和削峰填谷是消息队列在秒杀系统设计中起到的主要作用,其中异步处理可以简化业务流程中的步骤,提升系统性能;削峰填谷可以削去到达秒杀系统的峰值流量,让业务逻辑的处理更加缓和;解耦合可以将秒杀系统和数据系统解耦开,这样两个系统的任何变更都不会影响到另一个系统,
如果你的系统想要提升写入性能实现系统的低耦合,想要抵挡高并发的写流量,那么你就可以考虑使用消息队列来完成。
总结削峰填谷是消息队列最主要的作用,但是会造成请求处理的延迟。
异步处理是提升系统性能的神器,但是你需要分清同步流程和异步流程的边界,同时消息存在着丢失的风险,我们需要考虑如何确保消息一定到达。
解耦合可以提升你的整体系统的鲁棒性。
当然,你要知道,在使用消息队列之后虽然可以解决现有的问题,但是系统的复杂度也会上升。比如上面提到的业务流程中,同步流程和异步流程的边界在哪里?消息是否会丢失,是否会重复?请求的延迟如何能够减少?消息接收的顺序是否会影响到业务流程的正常执行?如果消息处理流程失败了之后是否需要补发?这些问题都是我们需要考虑的。
如何处理消息的丢失和重复,另一个是如何减少消息的延迟。
引入了消息队列的同时也会引入了新的问题,需要新的方案来解决,这就是系统设计的挑战,也是系统设计独有的魅力,而我们也会在这些挑战中不断提升技术能力和系统设计能力。
推荐阅读
- linux数组排序显示
- 小程序和uniapp的getApp().globalDate.#yyds干货盘点#
- 就能学会 50%,剩下的 1/2 看下一篇。
- #指尖人生#面向对象设计常用的设计模式-简单工厂模式
- Python运维开发(CMDB资产管理系统)——环境部署下篇
- 动力节点Spring框架学习笔记-王鹤AOP面向切面编程
- R语言图像处理EBImage包详解
- C#中的方法重写和方法隐藏之间的区别
- Mealy机器和Moore机器之间有什么区别()